Functional principal component analysis for longitudinal data with informative dropout

被引:18
作者
Shi, Haolun [1 ]
Dong, Jianghu [1 ,2 ,3 ]
Wang, Liangliang [1 ]
Cao, Jiguo [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Univ Nebraska Med Ctr, Dept Biostat, Omaha, NE USA
[3] Univ Nebraska Med Ctr, Div Nephrol, Omaha, NE USA
基金
加拿大自然科学与工程研究理事会;
关键词
filtration rates; functional data analysis; informative missing; kidney glomerular likelihood; orthonormal empirical basis functions; LINEAR-REGRESSION; CONVERGENCE;
D O I
10.1002/sim.8798
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In longitudinal studies, the values of biomarkers are often informatively missing due to dropout. The conventional functional principal component analysis typically disregards the missing information and simply treats the unobserved data points as missing completely at random. As a result, the estimation of the mean function and the covariance surface might be biased, resulting in a biased estimation of the functional principal components. We propose the informatively missing functional principal component analysis (imFunPCA), which is well suited for cases where the longitudinal trajectories are subject to informative missingness. Computation of the functional principal components in our approach is based on the likelihood of the data, where information of both the observed and missing data points are incorporated. We adopt a regression-based orthogonal approximation method to decompose the latent stochastic process based on a set of orthonormal empirical basis functions. Under the case of informative missingness, we show via simulation studies that the performance of our approach is superior to that of the conventional ones. We apply our method on a longitudinal dataset of kidney glomerular filtration rates for patients post renal transplantation.
引用
收藏
页码:712 / 724
页数:13
相关论文
共 18 条
[11]   The importance of early detection of chronic kidney disease [J].
Locatelli, F ;
Del Vecchio, L ;
Pozzoni, P .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2002, 17 :2-7
[12]   Long-term graft function changes in kidney transplant recipients [J].
Marcen, Roberto ;
Maria Morales, Jose ;
Fernandez-Rodriguez, Ana ;
Capdevila, Luis ;
Pallardo, Luis ;
Jose Plaza, Juan ;
Jose Cubero, Juan ;
Maria Puig, Josep ;
Sanchez-Fructuoso, Ana ;
Arias, Manual ;
Alperovich, Gabriela ;
Seron, Daniel .
CLINICAL KIDNEY JOURNAL, 2010, 3 :II2-II8
[13]   Weak convergence for the covariance operators of a Hilbertian linear process [J].
Mas, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 99 (01) :117-135
[14]   Supervised functional principal component analysis [J].
Nie, Yunlong ;
Wang, Liangliang ;
Liu, Baisen ;
Cao, Jiguo .
STATISTICS AND COMPUTING, 2018, 28 (03) :713-723
[15]   Estimated one-year glomerular filtration rate is the best predictor of long-term graft function following renal transplant [J].
Salvadori, M ;
Rosati, A ;
Bock, A ;
Chapman, J ;
Dussol, B ;
Fritsche, L ;
Kliem, V ;
Lebranchu, Y ;
Oppenheimer, F ;
Pohanka, E ;
Tufveson, G ;
Bertoni, E .
TRANSPLANTATION, 2006, 81 (02) :202-206
[16]   Parametric Functional Principal Component Analysis [J].
Sang, Peijun ;
Wang, Liangliang ;
Cao, Jiguo .
BIOMETRICS, 2017, 73 (03) :802-810
[17]   Functional linear regression analysis for longitudinal data [J].
Yao, F ;
Müller, HG ;
Wang, JL .
ANNALS OF STATISTICS, 2005, 33 (06) :2873-2903
[18]   Functional data analysis for sparse longitudinal data [J].
Yao, F ;
Müller, HG ;
Wang, JL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) :577-590