Functional principal component analysis for longitudinal data with informative dropout
被引:18
作者:
Shi, Haolun
论文数: 0引用数: 0
h-index: 0
机构:
Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, CanadaSimon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
Shi, Haolun
[1
]
Dong, Jianghu
论文数: 0引用数: 0
h-index: 0
机构:
Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
Univ Nebraska Med Ctr, Dept Biostat, Omaha, NE USA
Univ Nebraska Med Ctr, Div Nephrol, Omaha, NE USASimon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
Dong, Jianghu
[1
,2
,3
]
Wang, Liangliang
论文数: 0引用数: 0
h-index: 0
机构:
Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, CanadaSimon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
Wang, Liangliang
[1
]
Cao, Jiguo
论文数: 0引用数: 0
h-index: 0
机构:
Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, CanadaSimon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
Cao, Jiguo
[1
]
机构:
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Univ Nebraska Med Ctr, Dept Biostat, Omaha, NE USA
[3] Univ Nebraska Med Ctr, Div Nephrol, Omaha, NE USA
In longitudinal studies, the values of biomarkers are often informatively missing due to dropout. The conventional functional principal component analysis typically disregards the missing information and simply treats the unobserved data points as missing completely at random. As a result, the estimation of the mean function and the covariance surface might be biased, resulting in a biased estimation of the functional principal components. We propose the informatively missing functional principal component analysis (imFunPCA), which is well suited for cases where the longitudinal trajectories are subject to informative missingness. Computation of the functional principal components in our approach is based on the likelihood of the data, where information of both the observed and missing data points are incorporated. We adopt a regression-based orthogonal approximation method to decompose the latent stochastic process based on a set of orthonormal empirical basis functions. Under the case of informative missingness, we show via simulation studies that the performance of our approach is superior to that of the conventional ones. We apply our method on a longitudinal dataset of kidney glomerular filtration rates for patients post renal transplantation.