Functional principal component analysis for longitudinal data with informative dropout

被引:18
作者
Shi, Haolun [1 ]
Dong, Jianghu [1 ,2 ,3 ]
Wang, Liangliang [1 ]
Cao, Jiguo [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Univ Nebraska Med Ctr, Dept Biostat, Omaha, NE USA
[3] Univ Nebraska Med Ctr, Div Nephrol, Omaha, NE USA
基金
加拿大自然科学与工程研究理事会;
关键词
filtration rates; functional data analysis; informative missing; kidney glomerular likelihood; orthonormal empirical basis functions; LINEAR-REGRESSION; CONVERGENCE;
D O I
10.1002/sim.8798
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In longitudinal studies, the values of biomarkers are often informatively missing due to dropout. The conventional functional principal component analysis typically disregards the missing information and simply treats the unobserved data points as missing completely at random. As a result, the estimation of the mean function and the covariance surface might be biased, resulting in a biased estimation of the functional principal components. We propose the informatively missing functional principal component analysis (imFunPCA), which is well suited for cases where the longitudinal trajectories are subject to informative missingness. Computation of the functional principal components in our approach is based on the likelihood of the data, where information of both the observed and missing data points are incorporated. We adopt a regression-based orthogonal approximation method to decompose the latent stochastic process based on a set of orthonormal empirical basis functions. Under the case of informative missingness, we show via simulation studies that the performance of our approach is superior to that of the conventional ones. We apply our method on a longitudinal dataset of kidney glomerular filtration rates for patients post renal transplantation.
引用
收藏
页码:712 / 724
页数:13
相关论文
共 18 条
[1]   Introduction [J].
不详 .
DIABETES CARE, 2015, 38 :S1-S2
[2]   Improving ultimate convergence of an augmented Lagrangian method [J].
Birgin, E. G. ;
Martinez, J. M. .
OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02) :177-195
[3]   A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :545-572
[4]   ASYMPTOTIC THEORY FOR THE PRINCIPAL COMPONENT ANALYSIS OF A VECTOR RANDOM FUNCTION - SOME APPLICATIONS TO STATISTICAL-INFERENCE [J].
DAUXOIS, J ;
POUSSE, A ;
ROMAIN, Y .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (01) :136-154
[5]   Principal Component Analysis With Sparse Fused Loadings [J].
Guo, Jian ;
James, Gareth ;
Levina, Elizaveta ;
Michailidis, George ;
Zhu, Ji .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) :930-946
[6]   Methodology and convergence rates for functional linear regression [J].
Hall, Peter ;
Horowitz, Joel L. .
ANNALS OF STATISTICS, 2007, 35 (01) :70-91
[7]  
Johnson S. G., 2019, The NLopt Nonlinear Optimization Package (Version 2.6.2)
[8]   THE EFFECTS OF DIETARY-PROTEIN RESTRICTION AND BLOOD-PRESSURE CONTROL ON THE PROGRESSION OF CHRONIC RENAL-DISEASE [J].
KLAHR, S ;
LEVEY, AS ;
BECK, GJ ;
CAGGIULA, AW ;
HUNSICKER, L ;
KUSEK, JW ;
STRIKER, G ;
BUCKALEW, V ;
BURKART, J ;
FURBERG, C ;
FELTS, J ;
MOORE, M ;
ROCCO, H ;
DOLECEK, T ;
WARREN, S ;
BEARDEN, B ;
STARKEY, C ;
HARVEY, J ;
POOLE, D ;
DAHLQUIST, S ;
DOROSHENKO, L ;
BRADHAM, K ;
WEST, D ;
AGOSTINO, J ;
COLE, L ;
BAKER, B ;
HAIRSTON, K ;
BURGOYNE, S ;
LAZARUS, J ;
STEINMAN, T ;
SEIFTER, J ;
DESMOND, M ;
FIORENZO, M ;
CHIAVACCI, A ;
METALIDES, T ;
KORZECRAMIREZ, D ;
GOULD, S ;
PICKETT, V ;
PORUSH, J ;
FAUBERT, P ;
SPITALEWITZ, S ;
FAUBERT, J ;
ZIMMER, G ;
SAUM, D ;
BLOCK, M ;
WOEL, J ;
ROSE, M ;
DENNIS, V ;
SCHWAB, S ;
MINDA, S .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 330 (13) :877-884
[9]   Partially functional linear regression in high dimensions [J].
Kong, Dehan ;
Xue, Kaijie ;
Yao, Fang ;
Zhang, Hao H. .
BIOMETRIKA, 2016, 103 (01) :147-159
[10]   Interpretable Functional Principal Component Analysis [J].
Lin, Zhenhua ;
Wang, Liangliang ;
Cao, Jiguo .
BIOMETRICS, 2016, 72 (03) :846-854