A novel fractional-order hyperchaotic system and its synchronization

被引:0
|
作者
Zhou Ping [1 ,2 ]
Wei Li-Jia [2 ]
Cheng Xue-Feng [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Minist Educ, Key Lab Network Control & Intelligent Instrument, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Inst Appl Phys, Chongqing 400065, Peoples R China
关键词
hyperchaotic system; fractional-order hyperchaotic system; nonlinear term; synchronization; DIFFERENTIAL-EQUATIONS; CHAOS SYNCHRONIZATION; ATTRACTOR;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a novel hyperchaotic system with one nonlinear term and its fractional order system are proposed. Furthermore, synchronization between two fractional-order systems with different fractional-order values is achieved. The proposed synchronization scheme is simple and theoretically rigorous. Numerical simulations are in agreement with the theoretical analysis.
引用
收藏
页码:2674 / 2679
页数:6
相关论文
共 50 条
  • [31] A No-Equilibrium Hyperchaotic System and Its Fractional-Order Form
    Duy Vo Hoang
    Kingni, Sifeu Takougang
    Viet-Thanh Pham
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [32] Modified projective synchronization of a fractional-order hyperchaotic system with a single driving variable
    王兴元
    张永雷
    Chinese Physics B, 2011, 20 (10) : 159 - 165
  • [33] Modified projective synchronization of a fractional-order hyperchaotic system with a single driving variable
    Wang Xing-Yuan
    Zhang Yong-Lei
    CHINESE PHYSICS B, 2011, 20 (10)
  • [34] Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication
    Wu, Xiangjun
    Wang, Hui
    Lu, Hongtao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1441 - 1450
  • [35] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [36] Robust synchronization for a class of fractional-order chaotic and hyperchaotic systems
    Li, Chunlai
    Su, Kalin
    Tong, Yaonan
    Li, Hongmin
    OPTIK, 2013, 124 (18): : 3242 - 3245
  • [37] The synchronization of Rossler hyperchaotic system with a fractional order
    Xu, Chen
    Feng, Jian-Wen
    Austin, Francis
    Zhang, Wei-Qiang
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (11-12) : 1517 - 1521
  • [38] Synchronization for fractional order hyperchaotic Chen system and fractional order hyperchaotic Rossler system with different structure
    Li Dong
    Deng Liang-Ming
    Du Yong-Xia
    Yang Yuan-Yuan
    ACTA PHYSICA SINICA, 2012, 61 (05)
  • [39] Novel encryption for color images using fractional-order hyperchaotic system
    Hosny, Khalid M.
    Kamal, Sara T.
    Darwish, Mohamed M.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (02) : 973 - 988
  • [40] Novel encryption for color images using fractional-order hyperchaotic system
    Khalid M. Hosny
    Sara T. Kamal
    Mohamed M. Darwish
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 973 - 988