Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects

被引:58
作者
Yu, Mengxiao [1 ]
Zhou, Chen [1 ]
Liu, Li [2 ]
Zhang, Shanrong [3 ]
Sun, Shasha [1 ]
Hankins, Julia D. [1 ]
Sun, Xiankai [2 ]
Zheng, Jie [1 ]
机构
[1] Univ Texas Dallas, Dept Chem & Biochem, 800 W Campbell Rd, Richardson, TX 75080 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Adv Imaging Res Ctr, Dallas, TX USA
关键词
microvascular density; nanoparticles; renal clearance; tumor acidity; tumor targeting; DRUG-DELIVERY; BREAST-CANCER; SOLID TUMORS; CARBON DOTS; IN-VIVO; SIZE; PH; ANGIOGENESIS; PHARMACOKINETICS; BIODISTRIBUTION;
D O I
10.1002/anie.201612647
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The success of nanomedicines in the clinic depends on our comprehensive understanding of nano-bio interactions in tumor microenvironments, which are characterized by dense leaky microvasculature and acidic extracellular pH (pH(e)) values. Herein, we investigated the accumulation of ultrasmall renal-clearable gold NPs (AuNPs) with and without acidity targeting in xenograft mouse models of two prostate cancer types, PC-3 and LNCaP, with distinct microenvironments. Our results show that both sets of AuNPs could easily penetrate into the tumors but their uptake and retention were mainly dictated by the tumor microvasculature and the enhanced permeability and retention effect over the entire targeting process. On the other hand, increased tumor acidity indeed enhanced the uptake of AuNPs with acidity targeting, but only for a limited period of time. By making use of simple surface chemistry, these two effects can be synchronized in time for high tumor targeting, opening new possibilities to further improve the targeting efficiencies of nanomedicines.
引用
收藏
页码:4314 / 4319
页数:6
相关论文
共 59 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev-bioeng-071811-150124, 10.1146/annurev.bioeng-071811-150124]
[2]   Effects of Charge on Antibody Tissue Distribution and Pharmacokinetics [J].
Boswell, C. Andrew ;
Tesar, Devin B. ;
Mukhyala, Kiran ;
Theil, Frank-Peter ;
Fielder, Paul J. ;
Khawli, Leslie A. .
BIOCONJUGATE CHEMISTRY, 2010, 21 (12) :2153-2163
[3]  
Brown JM, 1998, CANCER RES, V58, P1408
[4]   Fluorescent Silica Nanoparticles with Efficient Urinary Excretion for Nanomedicine [J].
Burns, Andrew A. ;
Vider, Jelena ;
Ow, Hooisweng ;
Herz, Erik ;
Penate-Medina, Oula ;
Baumgart, Martin ;
Larson, Steven M. ;
Wiesner, Ulrich ;
Bradbury, Michelle .
NANO LETTERS, 2009, 9 (01) :442-448
[5]  
Cabral H, 2011, NAT NANOTECHNOL, V6, P815, DOI [10.1038/nnano.2011.166, 10.1038/NNANO.2011.166]
[6]   Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates [J].
Caliceti, P ;
Veronese, FM .
ADVANCED DRUG DELIVERY REVIEWS, 2003, 55 (10) :1261-1277
[7]   Mesoporous Silica as Nanoreactors to Prepare Gd-Encapsulated Carbon Dots of Controllable Sizes and Magnetic Properties [J].
Chen, Hongmin ;
Wang, Geoffrey D. ;
Sun, Xilin ;
Todd, Trever ;
Zhang, Fan ;
Xie, Jin ;
Shen, Baozhong .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (22) :3973-3982
[8]   Renal clearance of quantum dots [J].
Choi, Hak Soo ;
Liu, Wenhao ;
Misra, Preeti ;
Tanaka, Eiichi ;
Zimmer, John P. ;
Ipe, Binil Itty ;
Bawendi, Moungi G. ;
Frangioni, John V. .
NATURE BIOTECHNOLOGY, 2007, 25 (10) :1165-1170
[9]  
Choi HS, 2010, NAT NANOTECHNOL, V5, P42, DOI [10.1038/nnano.2009.314, 10.1038/NNANO.2009.314]
[10]   pH-Titratable Superparamagnetic Iron Oxide for Improved Nanoparticle Accumulation in Acidic Tumor Microenvironments [J].
Crayton, Samuel H. ;
Tsourkas, Andrew .
ACS NANO, 2011, 5 (12) :9592-9601