Linear Precoder Design for Physical Layer Security via Reconfigurable Intelligent Surfaces

被引:5
作者
Amarasuriya, Gayan [1 ]
Schaefer, Rafael F. [2 ]
Poor, H. Vincent [3 ]
机构
[1] Southern Illinois Univ, Dept Elect & Comp Engn, Carbondale, IL 62901 USA
[2] Tech Univ Berlin, Informat Theory & Applicat Chair, Berlin, Germany
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020) | 2020年
基金
美国国家科学基金会;
关键词
WIRELESS COMMUNICATION; REFLECTING SURFACE;
D O I
10.1109/spawc48557.2020.9153886
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The feasibility of provisioning physical layer security via reconfigurable intelligent surfaces (RISs) is investigated. The key idea is to constructively combine the signals received through the direct and reflected channels at a legitimate user, while degrading the signal quality at a passive eavesdropper by destructive combining of these two signals enabled via a joint effect of intelligent phase control at a large number of passive reflective elements of the RIS and a corresponding precoder design of the base-station. To this end, we advocate adoption of linear precoders, which are designed based on cascaded channels, with sole optimization of phase-shifts at the RIS to maximize the achievable secrecy rate in the presence of a passive eavesdropper. The underlying optimization problem is solved by developing an alternating algorithm to iteratively update the phase-shifts of the RIS. Specifically, the optimal phase-shift design problem can be modeled as a semidefinite program by using relaxation techniques. Thereby, the optimal phase-shift values can be closely approximated by using Gaussian randomization techniques. Our numerical results show that the proposed technique serves as a practical-viable low-complexity alternative to joint optimization of non-linear precoder and RIS phase-shifts.
引用
收藏
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 2014, Convex Optimiza- tion
[2]   Wireless Communications Through Reconfigurable Intelligent Surfaces [J].
Basar, Ertugrul ;
Di Renzo, Marco ;
De Rosny, Julien ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Zhang, Rui .
IEEE ACCESS, 2019, 7 :116753-116773
[3]  
Bezdek J. C., 2002, SOME NOTES ALTERNATI
[4]  
Bloch M., 2001, Physical-Layer Security: From Information Theory to Security Engineering
[5]   Intelligent Reflecting Surface: A Programmable Wireless Environment for Physical Layer Security [J].
Chen, Jie ;
Liang, Ying-Chang ;
Pei, Yiyang ;
Guo, Huayan .
IEEE ACCESS, 2019, 7 :82599-82612
[6]   Intelligent Reflecting Surface Aided Multi-Antenna Secure Transmission [J].
Chu, Zheng ;
Hao, Wanming ;
Xiao, Pei ;
Shi, Jia .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (01) :108-112
[7]   Secure Wireless Communication via Intelligent Reflecting Surface [J].
Cui, Miao ;
Zhang, Guangchi ;
Zhang, Rui .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (05) :1410-1414
[8]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[9]   Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come [J].
Di Renzo, Marco ;
Debbah, Merouane ;
Dinh-Thuy Phan-Huy ;
Zappone, Alessio ;
Alouini, Mohamed-Slim ;
Yuen, Chau ;
Sciancalepore, Vincenzo ;
Alexandropoulos, George C. ;
Hoydis, Jakob ;
Gacanin, Haris ;
de Rosny, Julien ;
Bounceur, Ahcene ;
Lerosey, Geoffroy ;
Fink, Mathias .
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2019, 2019 (1)
[10]  
Ellingson S. W., 2019, ARXIV191206759