Discovering Maximal Motif Cliques in Large Heterogeneous Information Networks

被引:41
作者
Hu, Jiafeng [1 ]
Cheng, Reynold [1 ]
Chang, Kevin Chen-Chuan [2 ]
Sankar, Aravind [2 ]
Fang, Yixiang [1 ]
Lam, Brian Y. H. [3 ]
机构
[1] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Univ Illinois, Dept Comp Sci, 1304 W Springfield Ave, Urbana, IL 61801 USA
[3] Univ Cambridge, Metab Res Labs, Cambridge, England
来源
2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019) | 2019年
基金
英国惠康基金; 美国国家科学基金会;
关键词
D O I
10.1109/ICDE.2019.00072
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the discovery of cliques (or "complete" subgraphs) in heterogeneous information networks (HINs). Existing clique-finding solutions often ignore the rich semantics of HINs. We propose motif clique, or m-clique, which redefines subgraph completeness with respect to a given motif. A motif, essentially a small subgraph pattern, is a fundamental building block of an HIN. The m-clique concept is general and allows us to analyse "complete" subgraphs in an HIN with respect to desired high-order connection patterns. We further investigate the maximal in-clique enumeration problem (MMCE), which finds all maximal m-cliques not contained in any other m-cliques. Because MMCE is NP-hard, developing an accurate and efficient solution for MMCE is not straightforward. We thus present the META algorithm, which employs advanced pruning strategies to effectively reduce the search space. We also design fast techniques to avoid generating duplicated maximal m-clique instances. Our extensive experiments on large real and synthetic HINs show that META is highly effective and efficient.
引用
收藏
页码:746 / 757
页数:12
相关论文
共 42 条
[1]  
Akkoyunlu E. A., 1973, SIAM Journal on Computing, V2, P1, DOI 10.1137/0202001
[2]   Higher-order organization of complex networks [J].
Benson, Austin R. ;
Gleich, David F. ;
Leskovec, Jure .
SCIENCE, 2016, 353 (6295) :163-166
[3]   Efficient Subgraph Matching by Postponing Cartesian Products [J].
Bi, Fei ;
Chang, Lijun ;
Lin, Xuemin ;
Qin, Lu ;
Zhang, Wenjie .
SIGMOD'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2016, :1199-1214
[4]   Statistical analysis of financial networks [J].
Boginski, V ;
Butenko, S ;
Pardalos, PM .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (02) :431-443
[5]   Dimensionality of Social Networks Using Motifs and Eigenvalues [J].
Bonato, Anthony ;
Gleich, David F. ;
Kim, Myunghwan ;
Mitsche, Dieter ;
Pralat, Pawel ;
Tian, Yanhua ;
Young, Stephen J. .
PLOS ONE, 2014, 9 (09)
[6]   FINDING ALL CLIQUES OF AN UNDIRECTED GRAPH [H] [J].
BRON, C ;
KERBOSCH, J .
COMMUNICATIONS OF THE ACM, 1973, 16 (09) :575-577
[7]   Challenging the Time Complexity of Exact Subgraph Isomorphism for Huge and Dense Graphs with VF3 [J].
Carletti, Vincenzo ;
Foggia, Pasquale ;
Saggese, Alessia ;
Vento, Mario .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :804-818
[8]  
Cheng James, 2012, SIGKDD, P1240
[9]  
Conte A., 2016, P 19 INT C EXT DAT T, p[173, 15], DOI DOI 10.5441/002/EDBT.2016.18
[10]   Segmentation and Automated Social Hierarchy Detection through Email Network Analysis [J].
Creamer, German ;
Rowe, Ryan ;
Hershkop, Shlomo ;
Stolfo, Salvatore J. .
ADVANCES IN WEB MINING AND WEB USAGE ANALYSIS, 2009, 5439 :40-+