Multifaceted fused-CNN based scoring of breast cancer whole-slide histopathology images

被引:29
作者
Wahab, Noorul [1 ]
Khan, Asifullah [1 ,2 ,3 ]
机构
[1] Pakistan Inst Engn & Appl Sci, Dept Comp & Informat Sci, PO 45650, Islamabad, Pakistan
[2] Pakistan Inst Engn & Appl Sci, Ctr Math Sci, Deep Learning Lab, PO 45650, Islamabad, Pakistan
[3] Pakistan Inst Engn & Appl Sci, PIEAS Artificial Intelligence Ctr PAIC, PO 45650, Islamabad, Pakistan
关键词
Whole-slide images; Pattern recognition; Breast cancer; Deep convolutional neural networks; Classifier fusion; CLASSIFICATION;
D O I
10.1016/j.asoc.2020.106808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automating the scoring of Whole-Slide Images (WSIs) is a challenging task because the search space for selecting region of interest (ROI) is huge due to the very large sizes of WSIs. A Multifaceted Fused-CNN (MF-CNN) and a Hybrid-Descriptor are proposed to develop an integrated scoring system for Breast Cancer histopathology WSIs. Suitable color and textural features are identified to help mitotic count based selection of ROIs at lower resolution. To recognize complex patterns, the MF-CNN considers multiple facets of the input image. It counts mitoses, extracts handcrafted features from ROIs and utilizes global texture of the images to form a Hybrid-Descriptor for training a classifier assigning scores to WSIs. The proposed system is evaluated on a publicly available benchmark (TUPAC16) and produced the highest score of 0.582 in terms of Cohen's Kappa. It surpassed human experts' level accuracy of ROI selection and can therefore reduce the burden of manual ROI selection for WSIs. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 33 条
  • [1] On automated source selection for transfer learning in convolutional neural networks
    Afridi, Muhammad Jamal
    Ross, Arun
    Shapiro, Erik M.
    [J]. PATTERN RECOGNITION, 2018, 73 : 65 - 75
  • [2] [Anonymous], 2014, SPIE MED IMAGING, V9041
  • [3] CellProfiler: image analysis software for identifying and quantifying cell phenotypes
    Carpenter, Anne E.
    Jones, Thouis Ray
    Lamprecht, Michael R.
    Clarke, Colin
    Kang, In Han
    Friman, Ola
    Guertin, David A.
    Chang, Joo Han
    Lindquist, Robert A.
    Moffat, Jason
    Golland, Polina
    Sabatini, David M.
    [J]. GENOME BIOLOGY, 2006, 7 (10)
  • [4] Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
    Cruz-Roa, Angel
    Gilmore, Hannah
    Basavanhally, Ajay
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie N. C.
    Tomaszewski, John
    Gonzalez, Fabio A.
    Madabhushi, Anant
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [5] A principled machine learning framework improves accuracy of stage II colorectal cancer prognosis
    Dimitriou, Neofytos
    Arandjelovic, Ognjen
    Harrison, David J.
    Caie, Peter D.
    [J]. NPJ DIGITAL MEDICINE, 2018, 1
  • [6] Fischer Andrew H, 2008, CSH Protoc, V2008, DOI 10.1101/pdb.prot4986
  • [7] Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks
    Gecer, Bads
    Aksoy, Selim
    Mercan, Ezgi
    Shapiro, Linda G.
    Weaver, Donald L.
    Elmore, Joann G.
    [J]. PATTERN RECOGNITION, 2018, 84 : 345 - 356
  • [8] Khan A., 2018, ABS180408528 CORR
  • [9] Khan A., 2019, ARTIF INTELL REV, DOI [10.1007/s10462-020-09825-6, DOI 10.1007/S10462-020-09825-6]
  • [10] On combining classifiers
    Kittler, J
    Hatef, M
    Duin, RPW
    Matas, J
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) : 226 - 239