Ligand Rigidification for Enhancing the Stability of Metal-Organic Frameworks

被引:243
作者
Lv, Xiu-Liang [1 ,2 ]
Yuan, Shuai [3 ]
Xie, Lin-Hua [1 ,2 ]
Darke, Hannah F. [3 ]
Chen, Ya [1 ,2 ]
He, Tao [1 ,2 ]
Dong, Chen [1 ,2 ]
Wang, Bin [1 ,2 ]
Zhang, Yong-Zheng [1 ,2 ]
Li, Jian-Rong [1 ,2 ]
Zhou, Hong-Cai [3 ]
机构
[1] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
[3] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
WATER STABILITY; CARBON-DIOXIDE; METHANE ADSORPTION; CAPTURE; MOFS; ADSORBENTS; DESIGN; UIO-66;
D O I
10.1021/jacs.9b02947
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) have been developing at an unexpected rate over the last two decades. However, the unsatisfactory chemical stability of most MOFs hinders some of the fundamental studies in this field and the implementation of these materials for practical applications. The stability in a MOF framework is mostly believed to rely upon the robustness of the M-L (M = metal ion, L = ligand) coordination bonds. However, the role of organic linkers as agents of stability to the framework, particularly the linker rigidity/flexibility, has been mostly overlooked. In this work, we demonstrate that a ligand-rigidification strategy can enhance the stability of MOFs. Three series of ligand rotamers with the same connectivity but different flexibility were prepared. Thirteen Zr-based MOFs were constructed with the Zr6O4(OH4)(-CO2)(n) units (n = 8 or 12) and corresponding ligands. These MOFs allow us to evaluate the influence of ligand rigidity, connectivities, and structure on the stability of the resulting materials. It was found that the rigidity of the ligands in the framework strongly contributes to the stability of corresponding MOFs. Furthermore, water adsorption was performed on some chemically stable MOFs, showing excellent performance. It is expected that more MOFs with excellent stability could be designed and constructed by utilizing this strategy, ultimately promoting the development of MOFs with higher stability for synthetic chemistry and practical applications.
引用
收藏
页码:10283 / 10293
页数:11
相关论文
共 57 条
[1]   A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control [J].
AbdulHalim, Rasha G. ;
Bhatt, Prashant M. ;
Belmabkhout, Youssef ;
Shkurenko, Aleksander ;
Adil, Karim ;
Barbour, Leonard J. ;
Eddaoudi, Mohamed .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (31) :10715-10722
[2]   Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water [J].
Abtab, Sk Md Towsif ;
Alezi, Dalal ;
Bhatt, Prashant M. ;
Shkurenko, Aleksander ;
Belmabkhout, Youssef ;
Aggarwal, Himanshu ;
Weselinski, Lukasz J. ;
Alsadun, Norah ;
Samin, Umer ;
Hedhili, Mohamed Nejib ;
Eddaoudi, Mohamed .
CHEM, 2018, 4 (01) :94-105
[3]   Toxic gas removal - metal-organic frameworks for the capture and degradation of toxic gases and vapours [J].
Barea, Elisa ;
Montoro, Carmen ;
Navarro, Jorge A. R. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) :5419-5430
[4]   Water Stability and Adsorption in Metal-Organic Frameworks [J].
Burtch, Nicholas C. ;
Jasuja, Himanshu ;
Walton, Krista S. .
CHEMICAL REVIEWS, 2014, 114 (20) :10575-10612
[5]   Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation [J].
Cadiau, Amandine ;
Lee, Ji Sun ;
Borges, Daiane Damasceno ;
Fabry, Paul ;
Devic, Thomas ;
Wharmby, Michael T. ;
Martineau, Charlotte ;
Foucher, Damien ;
Taulelle, Francis ;
Jun, Chul-Ho ;
Hwang, Young Kyu ;
Stock, Norbert ;
De Lange, Martijn F. ;
Kapteijn, Freek ;
Gascon, Jorge ;
Maurin, Guillaume ;
Chang, Jong-San ;
Serre, Christian .
ADVANCED MATERIALS, 2015, 27 (32) :4775-4780
[6]   Water adsorption in MOFs: fundamentals and applications [J].
Canivet, Jerome ;
Fateeva, Alexandra ;
Guo, Youmin ;
Coasne, Benoit ;
Farrusseng, David .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) :5594-5617
[7]   A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J].
Cavka, Jasmina Hafizovic ;
Jakobsen, Soren ;
Olsbye, Unni ;
Guillou, Nathalie ;
Lamberti, Carlo ;
Bordiga, Silvia ;
Lillerud, Karl Petter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (42) :13850-13851
[8]   A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water [J].
Chen, Ya ;
Wang, Bin ;
Wang, Xiaoqing ;
Xie, Lin-Hua ;
Li, Jinping ;
Xie, Yabo ;
Li, Jian-Rong .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (32) :27027-27035
[9]   High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites [J].
Colombo, Valentina ;
Galli, Simona ;
Choi, Hye Jin ;
Han, Ggoch Ddeul ;
Maspero, Angelo ;
Palmisano, Giovanni ;
Masciocchi, Norberto ;
Long, Jeffrey R. .
CHEMICAL SCIENCE, 2011, 2 (07) :1311-1319
[10]   Luminescent Functional Metal-Organic Frameworks [J].
Cui, Yuanjing ;
Yue, Yanfeng ;
Qian, Guodong ;
Chen, Banglin .
CHEMICAL REVIEWS, 2012, 112 (02) :1126-1162