Hierarchically structured TiO2@MnO2 nanowall arrays as potential electrode material for high-performance supercapacitors

被引:59
作者
Ramadoss, Ananthakumar [1 ]
Kim, Sang Jae [1 ,2 ,3 ]
机构
[1] Jeju Natl Univ, Sci & Engn Coll, Fac Appl Energy Syst, Nanomat & Syst Lab, Cheju 690756, South Korea
[2] Jeju Natl Univ, Engn Coll, Dept Mechatron Engn, Nanomat & Syst Lab, Cheju 690756, South Korea
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
新加坡国家研究基金会;
关键词
Core-shell; Energy storage; Manganese dioxide; Supercapacitor; Titanium dioxide; Nanorods; CORE-SHELL NANOWIRES; TIO2 NANOTUBE ARRAYS; NANOSHEET CORE/SHELL ARRAYS; HETEROSTRUCTURE; MECHANISM; NANORODS; FOAM;
D O I
10.1016/j.ijhydene.2014.05.118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have reported a facile route for the fabrication of TiO2@MnO2 core-shell nano-structures for use as an electrode material, using a simple hydrothermal process for supercapacitor applications. Field-emission scanning electron microscopy and transmission electron microscopy studies confirmed the formation of a MnO2 nanowall shell structure on the core of TiO2 nanorod surfaces. The nanostructured TiO2@MnO2 core-shell was used as an electrode material, which exhibited excellent electrochemical properties with an improved areal capacitance of 22.19 mF cm(-2) (TM-3) at a scan rate of 5 mV s(-1) in a 1-M Na2SO4 electrolyte solution. Moreover, the electrode material demonstrated excellent performance with long term cycling stability, by retaining 85% of its initial capacitance after 4000 cycles. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12201 / 12212
页数:12
相关论文
共 49 条
[31]   Microwave-Assisted Synthesis of a Core-Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid [J].
Sun, Chia-Liang ;
Chang, Ching-Tang ;
Lee, Hsin-Hsien ;
Zhou, Jigang ;
Wang, Jian ;
Sham, Tsun-Kong ;
Pong, Way-Faung .
ACS NANO, 2011, 5 (10) :7788-7795
[32]   Three-dimensional ZnO@MnO2 core@shell nanostructures for electrochemical energy storage [J].
Sun, Xing ;
Li, Qiang ;
Lu, Yinong ;
Mao, Yuanbing .
CHEMICAL COMMUNICATIONS, 2013, 49 (40) :4456-4458
[33]   Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J].
Toupin, M ;
Brousse, T ;
Bélanger, D .
CHEMISTRY OF MATERIALS, 2004, 16 (16) :3184-3190
[34]   A review of electrode materials for electrochemical supercapacitors [J].
Wang, Guoping ;
Zhang, Lei ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) :797-828
[35]   Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage [J].
Wei, Huige ;
Yan, Xingru ;
Wu, Shijie ;
Luo, Zhiping ;
Wei, Suying ;
Guo, Zhanhu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (47) :25052-25064
[36]   Manganese oxide-based materials as electrochemical supercapacitor electrodes [J].
Wei, Weifeng ;
Cui, Xinwei ;
Chen, Weixing ;
Ivey, Douglas G. .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (03) :1697-1721
[37]   Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors [J].
Xia, Hui ;
Zhu, Dongdong ;
Luo, Zhentao ;
Yu, Yue ;
Shi, Xiaoqin ;
Yuan, Guoliang ;
Xie, Jianping .
SCIENTIFIC REPORTS, 2013, 3
[38]   Porous Hydroxide Nanosheets on Preformed Nanowires by Electrodeposition: Branched Nanoarrays for Electrochemical Energy Storage [J].
Xia, Xinhui ;
Tu, Jiangping ;
Zhang, Yongqi ;
Chen, Jiao ;
Wang, Xiuli ;
Gu, Changdong ;
Guan, Cao ;
Luo, Jingshan ;
Fan, Hong Jin .
CHEMISTRY OF MATERIALS, 2012, 24 (19) :3793-3799
[39]   MnO2-coated graphitic petals for supercapacitor electrodes [J].
Xiong, Guoping ;
Hembram, K. P. S. S. ;
Reifenberger, R. G. ;
Fisher, Timothy S. .
JOURNAL OF POWER SOURCES, 2013, 227 :254-259
[40]   Facile Coating of Manganese Oxide on Tin Oxide Nanowires with High-Performance Capacitive Behavior [J].
Yan, Jian ;
Khoo, Eugene ;
Sumboja, Afriyanti ;
Lee, Pool See .
ACS NANO, 2010, 4 (07) :4247-4255