On the least squares estimator in a nearly unstable sequence of stationary spatial AR models

被引:4
|
作者
Baran, Sandor [1 ]
Pap, Gyula [1 ]
机构
[1] Univ Debrecen, Fac Informat, H-4010 Debrecen, Hungary
基金
匈牙利科学研究基金会;
关键词
Autoregressive model; Asymptotic normality; Martingale central limit theorem; ASYMPTOTIC INFERENCE; UNIT ROOTS; AUTOREGRESSION;
D O I
10.1016/j.jmva.2008.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A nearly unstable sequence of stationary spatial autoregressive processes is investigated, when the sum of the absolute values of the autoregressive coefficients tends to one. It is shown that after an appropriate normalization the least squares estimator for these coefficients has a normal limit distribution. If none of the parameters equals zero then the typical rate of convergence is n. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:686 / 698
页数:13
相关论文
共 5 条