Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi

被引:105
作者
Adolfi, Adriana [1 ,10 ]
Gantz, Valentino M. [2 ]
Jasinskiene, Nijole [1 ]
Lee, Hsu-Feng [1 ]
Hwang, Kristy [1 ]
Terradas, Gerard [2 ,3 ]
Bulger, Emily A. [2 ,3 ,11 ,12 ]
Ramaiah, Arunachalam [4 ,5 ]
Bennett, Jared B. [6 ]
Emerson, J. J. [4 ]
Marshall, John M. [7 ,8 ]
Bier, Ethan [2 ,3 ]
James, Anthony A. [1 ,9 ]
机构
[1] Univ Calif Irvine, Dept Microbiol & Mol Genet, Irvine, CA 92697 USA
[2] Univ Calif San Diego, Sect Cell & Dev Biol, La Jolla, CA 92093 USA
[3] UCSD, Tata Inst Genet & Soc TIGS, La Jolla, CA 92093 USA
[4] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA
[5] Tata Inst Genet & Soc TIGS India, Bangalore 560065, KA, India
[6] Univ Calif Berkeley, Coll Letters & Sci, Biophys Grad Grp, Div Biol Sci, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Sch Publ Hlth, Div Epidemiol & Biostat, Berkeley, CA 94720 USA
[8] Innovat Genom Inst, Berkeley, CA 94720 USA
[9] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[10] Univ Liverpool Liverpool Sch Trop Med, Vector Biol Dept, Liverpool L3 5QA, Merseyside, England
[11] Univ Calif San Francisco, Dev & Stem Cell Biol Grad Program, San Francisco, CA 94158 USA
[12] Gladstone Inst, San Francisco, CA 94158 USA
基金
美国国家卫生研究院;
关键词
VECTOR MOSQUITO; RECOMMENDATIONS; AFRICA;
D O I
10.1038/s41467-020-19426-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with >= 95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios. Gene drives may be impeded by the generation of resistant alleles following NHEJ. Here the authors develop a recoded gene-drive rescue system for the malaria mosquito, Anopheles stephensi, that targets the drive to the kynurenine hydroxylase gene for negative selection against mutated alleles.
引用
收藏
页数:13
相关论文
共 51 条
  • [1] Developing standard operating procedures for gene drive research in disease vector mosquitoes
    Adelman, Zach N.
    Pledger, David
    Myles, Kevin M.
    [J]. PATHOGENS AND GLOBAL HEALTH, 2017, 111 (08) : 436 - 447
  • [2] Safeguarding gene drive experiments in the laboratory
    Akbari, Omar S.
    Bellen, Hugo J.
    Bier, Ethan
    Bullock, Simon L.
    Burt, Austin
    Church, George M.
    Cook, Kevin R.
    Duchek, Peter
    Edwards, Owain R.
    Esvelt, Kevin M.
    Gantz, Valentino M.
    Golic, Kent G.
    Gratz, Scott J.
    Harrison, Melissa M.
    Hayes, Keith R.
    James, Anthony A.
    Kaufman, Thomas C.
    Knoblich, Juergen
    Malik, Harmit S.
    Matthews, Kathy A.
    O'Connor-Giles, Kate M.
    Parks, Annette L.
    Perrimon, Norbert
    Port, Fillip
    Russell, Steven
    Ueda, Ryu
    Wildonger, Jill
    [J]. SCIENCE, 2015, 349 (6251) : 927 - 929
  • [3] Structural basis of kynurenine 3-monooxygenase inhibition
    Amaral, Marta
    Levy, Colin
    Heyes, Derren J.
    Lafite, Pierre
    Outeiro, Tiago F.
    Giorgini, Flaviano
    Leys, David
    Scrutton, Nigel S.
    [J]. NATURE, 2013, 496 (7445) : 382 - +
  • [4] Gene drive for population genetic control: non-functional resistance and parental effects
    Beaghton, Andrea K.
    Hammond, Andrew
    Nolan, Tony
    Crisanti, Andrea
    Burt, Austin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 286 (1914)
  • [5] Recommendations for Laboratory Containment and Management of Gene Drive Systems in Arthropods
    Benedict, Mark Q.
    Burt, Austin
    Capurro, Margareth L.
    De Barro, Paul
    Handler, Alfred M.
    Hayes, Keith R.
    Marshall, John M.
    Tabachnick, Walter J.
    Adelman, Zach N.
    [J]. VECTOR-BORNE AND ZOONOTIC DISEASES, 2018, 18 (01) : 2 - 13
  • [6] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [7] Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae
    Carballar-Lejarazu, Rebeca
    Ogaugwu, Christian
    Tushar, Taylor
    Kelsey, Adam
    Thai Binh Pham
    Murphy, Jazmin
    Schmidt, Hanno
    Lee, Yoosook
    Lanzaro, Gregory C.
    James, Anthony A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (37) : 22805 - 22814
  • [8] Population modification of Anopheline species to control malaria transmission
    Carballar-Lejarazu, Rebeca
    James, Anthony A.
    [J]. PATHOGENS AND GLOBAL HEALTH, 2017, 111 (08) : 424 - 435
  • [9] A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population
    Champer, Jackson
    Yang, Emily
    Lee, Esther
    Liu, Jingxian
    Clark, Andrew G.
    Messer, Philipp W.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (39) : 24377 - 24383
  • [10] A toxin-antidote CRISPR gene drive system for regional population modification
    Champer, Jackson
    Lee, Esther
    Yang, Emily
    Liu, Chen
    Clark, Andrew G.
    Messer, Philipp W.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)