Flow dependent performance of microfluidic microbial fuel cells

被引:28
作者
Vigolo, Daniele [1 ]
Al-Housseiny, Talal T. [2 ]
Shen, Yi [1 ]
Akinlawon, Fiyinfoluwa O. [1 ]
Al-Housseiny, Saif T. [3 ]
Hobson, Ronald K. [4 ]
Sahu, Amaresh [2 ]
Bedkowski, Katherine I. [2 ]
DiChristina, Thomas J. [5 ]
Stone, Howard A. [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] ETH, Dept Chem & Biol Engn, CH-8093 Zurich, Switzerland
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[4] Morehouse Coll, Atlanta, GA 30314 USA
[5] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
WASTE-WATER TREATMENT; MEMBRANE-LESS; ELECTRICITY PRODUCTION; THROUGH ELECTRODES; BIOFUEL CELLS; MASS-TRANSFER; GENERATION; REDUCTION; ADHESION; DENSITY;
D O I
10.1039/c4cp01086h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of Microbial Fuel Cells (MFCs) in a microfluidic geometry can significantly enhance the power density of these cells, which would have more active bacteria per unit volume. Moreover, microfluidic MFCs can be operated in a continuous mode as opposed to the traditional batch-fed mode. Here we investigate the effect of fluid flow on the performance of microfluidic MFCs. The growth and the structure of the bacterial biofilm depend to a large extent on the shear stress of the flow. We report the existence of a range of flow rates for which MFCs can achieve maximum voltage output. When operated under these optimal conditions, the power density of our microfluidic MFC is about 15 times that of a similar-size batch MFC. Furthermore, this optimum suggests a correlation between the behaviour of bacteria and fluid flow.
引用
收藏
页码:12535 / 12543
页数:9
相关论文
共 68 条
[1]   The anode potential regulates bacterial activity in microbial fuel cells [J].
Aelterman, Peter ;
Freguia, Stefano ;
Keller, Jurg ;
Verstraete, Willy ;
Rabaey, Korneel .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (03) :409-418
[2]   Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell [J].
Aldrovandi, Aba ;
Marsili, Enrico ;
Stante, Loredana ;
Paganin, Patrizia ;
Tabacchioni, Silvia ;
Giordano, Andrea .
BIORESOURCE TECHNOLOGY, 2009, 100 (13) :3252-3260
[3]  
[Anonymous], 1998, ANAL TRANSPORT PHENO
[4]   A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes [J].
Biffinger, Justin C. ;
Pietron, Jeremy ;
Ray, Ricky ;
Little, Brenda ;
Ringeisen, Bradley R. .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (08) :1672-1679
[5]   Boundary Layer Analysis of Membraneless Electrochemical Cells [J].
Braff, William A. ;
Buie, Cullen R. ;
Bazant, Martin Z. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2056-A2063
[6]   Membrane-less hydrogen bromine flow battery [J].
Braff, William A. ;
Bazant, Martin Z. ;
Buie, Cullen R. .
NATURE COMMUNICATIONS, 2013, 4
[7]   MASS-TRANSFER IN PACKED-BEDS OF SCREENS [J].
CANO, J ;
BOHM, U .
CHEMICAL ENGINEERING SCIENCE, 1977, 32 (02) :213-219
[8]   Testing various food-industry wastes for electricity production in microbial fuel cell [J].
Cercado-Quezada, Bibiana ;
Delia, Marie-Line ;
Bergel, Alain .
BIORESOURCE TECHNOLOGY, 2010, 101 (08) :2748-2754
[9]  
Choban E.R., 2002, POWER SOURCES PROC, V40, P317
[10]   Microfluidic fuel cell based on laminar flow [J].
Choban, ER ;
Markoski, LJ ;
Wieckowski, A ;
Kenis, PJA .
JOURNAL OF POWER SOURCES, 2004, 128 (01) :54-60