Direct Writing of Elastic Fibers with Optical, Electrical, and Microfluidic Functionality

被引:21
作者
Athanasiadis, Markos [1 ]
Pak, Anna [1 ]
Afanasenkau, Dzmitry [1 ]
Minev, Ivan R. [1 ]
机构
[1] Tech Univ Dresden, CMCB, Biotechnol Ctr BIOTEC, D-01307 Dresden, Germany
关键词
3D printing; elastic fibers; soft machines; COMPOSITES;
D O I
10.1002/admt.201800659
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Direct Ink Writing is an additive fabrication technology that allows the integration of a diverse range of functional materials into soft and bioinspired devices such as robots and human-machine interfaces. Typically, a viscoelastic ink is extruded from a nozzle as a continuous filament of circular cross section. Here it is shown that a careful selection of printing parameters such as nozzle height and speed can produce filaments with a range of cross-sectional geometries. Thus, elliptic cylinder-, ribbon-, or groove-shaped filaments can be printed. By using the nozzle as a stylus for postprint filament modification, even filaments with an embedded microfluidic channel can be produced. This strategy is applied to directly write freeform and elastic optical fibers, electrical interconnects, and microfluidics. The integration of these components into simple sensor-actuator systems is demonstrated. Prototypes of an optical fiber with steerable tip and a thermal actuation system for soft tissues are presented.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Smart Sensor Systems for Wearable Electronic Devices [J].
An, Byeong Wan ;
Shin, Jung Hwal ;
Kim, So-Yun ;
Kim, Joohee ;
Ji, Sangyoon ;
Park, Jihun ;
Lee, Youngjin ;
Jang, Jiuk ;
Park, Young-Geun ;
Cho, Eunjin ;
Jo, Subin ;
Park, Jang-Ung .
POLYMERS, 2017, 9 (08)
[2]   Polyscope: A New Era in Flexible Ureterorenoscopy [J].
Bansal, Harbans ;
Swain, Samir ;
Sharma, Girish K. ;
Mathanya, Mikhil ;
Trivedi, Sameer ;
Dwivedi, Udai S. ;
Singh, Pratap B. .
JOURNAL OF ENDOUROLOGY, 2011, 25 (02) :317-321
[3]   Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo [J].
Canales, Andres ;
Jia, Xiaoting ;
Froriep, Ulrich P. ;
Koppes, Ryan A. ;
Tringides, Christina M. ;
Selvidge, Jennifer ;
Lu, Chi ;
Hou, Chong ;
Wei, Lei ;
Fink, Yoel ;
Anikeeva, Polina .
NATURE BIOTECHNOLOGY, 2015, 33 (03) :277-+
[4]   A monolithic PDMS waveguide system fabricated using soft-lithography techniques [J].
Chang-Yen, DA ;
Eich, RK ;
Gale, BK .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (06) :2088-2093
[5]   Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators [J].
Ersen, Ali ;
Sahin, Mesut .
JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (05)
[6]   Engineered 3D-printed artificial axons [J].
Espinosa-Hoyos, Daniela ;
Jagielska, Anna ;
Homan, Kimberly A. ;
Du, Huifeng ;
Busbee, Travis ;
Anderson, Daniel G. ;
Fang, Nicholas X. ;
Lewis, Jennifer A. ;
Van Vliet, Krystyn J. .
SCIENTIFIC REPORTS, 2018, 8
[7]  
Gladman AS, 2016, NAT MATER, V15, P413, DOI [10.1038/NMAT4544, 10.1038/nmat4544]
[8]   Viscoplastic Matrix Materials for Embedded 3D Printing [J].
Grosskopf, Abigail K. ;
Truby, Ryan L. ;
Kim, Hyoungsoo ;
Perazzo, Antonio ;
Lewis, Jennifer A. ;
Stone, Howard A. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (27) :23353-23361
[9]   Highly Stretchable, Strain Sensing Hydrogel Optical Fibers [J].
Guo, Jingjing ;
Liu, Xinyue ;
Jiang, Nan ;
Yetisen, Ali K. ;
Yuk, Hyunwoo ;
Yang, Changxi ;
Khademhosseini, Ali ;
Zhao, Xuanhe ;
Yun, Seok-Hyun .
ADVANCED MATERIALS, 2016, 28 (46) :10244-10249
[10]   3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers [J].
Jo, Yejin ;
Kim, Ju Young ;
Kim, So-Yun ;
Seo, Yeong-Hui ;
Jang, Kwang-Suk ;
Lee, Su Yeon ;
Jung, Sungmook ;
Ryu, Beyong-Hwan ;
Kim, Hyun-Suk ;
Park, Jang-Ung ;
Choi, Youngmin ;
Jeong, Sunho .
NANOSCALE, 2017, 9 (16) :5072-5084