EXISTENCE AND UNIQUENESS OF TIME-PERIODIC SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN THE WHOLE PLANE

被引:24
作者
Galdi, Giovanni P. [1 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2013年 / 6卷 / 05期
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; time-periodic solutions; plane flow; STEADY-STATE OSEEN; UNBOUNDED-DOMAINS; SIMPLE PROOF; BODY; FORCE; SPACE;
D O I
10.3934/dcdss.2013.6.1237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the two-dimensional motion of a Navier-Stokes liquid in the whole plane, under the action of a time-periodic body force F of period T, and tending to a prescribed nonzero constant velocity at infinity. We show that if the magnitude of F, in suitable norm, is sufficiently small, there exists one and only one corresponding time-periodic flow of period T in an appropriate function class.
引用
收藏
页码:1237 / 1257
页数:21
相关论文
共 20 条
[1]  
[Anonymous], 1958, B MATH SOC SCI MATH
[2]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[3]  
Galdi GP, 2013, P AM MATH SOC, V141, P1313
[4]  
Galdi GP, 2013, P AM MATH SOC, V141, P573
[5]   On the Motion of a Rigid Body in a Navier-Stokes Liquid under the Action of a Time-Periodic Force [J].
Galdi, Giovanni P. ;
Silvestre, Ana L. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) :2805-2842
[6]   Existence of time-periodic solutions to the Navier-Stokes equations around a moving body [J].
Galdi, GP ;
Silvestre, AL .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 223 (02) :251-267
[7]  
Galdi GP, 1999, PROG NONLIN, V35, P273
[8]   Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body [J].
Galdi, GP ;
Sohr, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (03) :363-406
[9]   Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data [J].
Kang, Kyungkuen ;
Miura, Hideyuki ;
Tsai, Tai-Peng .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (10) :1717-1753
[10]   Periodic solutions of the Navier-Stokes equations in unbounded domains [J].
Kozono, H ;
Nakao, M .
TOHOKU MATHEMATICAL JOURNAL, 1996, 48 (01) :33-50