Improved Mortality Prediction in Dialysis Patients Using Specific Clinical and Laboratory Data

被引:10
作者
Hemke, Aline C. [1 ]
Heemskerk, Martin B. A. [1 ]
van Diepen, Merel [2 ]
Dekker, Friedo W. [2 ]
Hoitsma, Andries J. [1 ,3 ]
机构
[1] Dutch Transplant Fdn, Organ Ctr, NL-2332 CB Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Clin Epidemiol, Leiden, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Div Nephrol, NL-6525 ED Nijmegen, Netherlands
关键词
End-stage renal disease; Mortality; Dialysis; Risk factors; MULTIPLE IMPUTATION; RISK PREDICTION; SURVIVAL; TRANSPLANTATION; NETHERLANDS; PROGNOSIS; ABILITY;
D O I
10.1159/000439181
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Risk prediction models can be used to inform patients undergoing renal replacement therapy about their survival chances. Easily available predictors such as registry data are most convenient, but their predictive value may be limited. We aimed to improve a simple prediction model based on registry data by incrementally adding sets of clinical and laboratory variables. Methods: Our data set includes 1,835 Dutch patients from the Netherlands Cooperative Study on the Adequacy of Dialysis. The potential survival predictors were categorized on availability. The first category includes easily available clinical data. The second set includes laboratory values like albumin. The most laborious category contains glomerular filtration rate (GFR) and Kt/V. Missing values were substituted using multiple imputation. Within 1,225 patients, we recalibrated the registry model and subsequently added parameter sets using multivariate Cox regression analyses with backward selection. On the other 610 patients, calibration and discrimination (C-index, integrated discrimination improvement (IDI) index and net reclassification improvement (NRI) index) were assessed for all models. Results: The recalibrated registry model showed adequate calibration and discrimination (C-index = 0.724). Adding easily available parameters resulted in a model with 10 predictors, with similar calibration and improved discrimination (C-index = 0.784). The IDI and NRI indices confirmed this, especially for short-term survival. Adding laboratory values resulted in an alternative model with similar discrimination (C-index = 0.788), and only the NRI index showed minor improvement. Adding GFR and Kt/V as candidate predictors did not result in a different model. Conclusion: A simple model based on registry data was enhanced by adding easily available clinical parameters. (C) 2015 S. Karger AG, Basel
引用
收藏
页码:158 / 167
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 2009, CLIN PREDICTION MODE, DOI 10.1007/978-3-030-16399-0
[2]   Multiple imputation: dealing with missing data [J].
de Goeij, Moniek C. M. ;
van Diepen, Merel ;
Jager, Kitty J. ;
Tripepi, Giovanni ;
Zoccali, Carmine ;
Dekker, Friedo W. .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (10) :2415-2420
[3]   K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification - Foreword [J].
Eknoyan, G ;
Levin, NW .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2002, 39 (02) :S14-S266
[4]   Evaluation of Cardiovascular Risk in Patients With Rheumatoid Arthritis: Do Cardiovascular Biomarkers Offer Added Predictive Ability Over Established Clinical Risk Scores? [J].
Finckh, Axel ;
Courvoisier, Delphine S. ;
Pagano, Sabrina ;
Bas, Sylvette ;
Chevallier-Ruggeri, Paola ;
Hochstrasser, Denis ;
Roux-Lombard, Pascale ;
Gabay, Cem ;
Vuilleumier, Nicolas .
ARTHRITIS CARE & RESEARCH, 2012, 64 (06) :817-825
[5]   Mortality among hemodialysis patients in Europe, Japan, and the United States:: Case-mix effects [J].
Goodkin, DA ;
Young, EW ;
Kurokawa, K ;
Prütz, KG ;
Levin, NW .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2004, 44 (05) :S16-S21
[6]   Survival prognosis after the start of a renal replacement therapy in the Netherlands: a retrospective cohort study [J].
Hemke, Aline C. ;
Heemskerk, Martin B. A. ;
van Diepen, Merel ;
Weimar, Willem ;
Dekker, Friedo W. ;
Hoitsma, Andries J. .
BMC NEPHROLOGY, 2013, 14
[7]   Predicting mortality after kidney transplantation: a clinical tool [J].
Jassal, SV ;
Schaubel, DE ;
Fenton, SSA .
TRANSPLANT INTERNATIONAL, 2005, 18 (11) :1248-1257
[8]   A Simple Tool to Predict Outcomes After Kidney Transplant [J].
Kasiske, Bertram L. ;
Israni, Ajay K. ;
Snyder, Jon J. ;
Skeans, Melissa A. ;
Peng, Yi ;
Weinhandl, Eric D. .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2010, 56 (05) :947-960
[9]   An Association between Body Mass Index and Estimated Glomerular Filtration Rate [J].
Kawamoto, Ryuichi ;
Kohara, Katsuhiko ;
Tabara, Yasuharu ;
Miki, Tetsuro ;
Ohtsuka, Nobuyuki ;
Kusunoki, Tomo ;
Yorimitsu, Nobukazu .
HYPERTENSION RESEARCH, 2008, 31 (08) :1559-1564
[10]   Multiple imputation: current perspectives [J].
Kenward, Michael G. ;
Carpenter, James .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (03) :199-218