Estimation of Parameters in Mean-Reverting Stochastic Systems

被引:1
|
作者
Tian, Tianhai [1 ]
Zhou, Yanli [2 ,3 ]
Wu, Yonghong [3 ]
Ge, Xiangyu [4 ]
机构
[1] Monash Univ, Sch Math Sci, Melbourne, Vic 3800, Australia
[2] Zhongnan Univ Econ & Law, Sch Finance, Wuhan 430073, Peoples R China
[3] Curtin Univ, Dept Math & Stat, Perth, WA 6845, Australia
[4] Wuhan Yangtze Business Univ, Wuhan 430065, Peoples R China
基金
澳大利亚研究理事会;
关键词
DIFFERENTIAL-EQUATIONS; BAYESIAN-INFERENCE; TERM STRUCTURE; MODELS;
D O I
10.1155/2014/317059
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stochastic differential equation (SDE) is a very important mathematical tool to describe complex systems in which noise plays an important role. SDE models have been widely used to study the dynamic properties of various nonlinear systems in biology, engineering, finance, and economics, as well as physical sciences. Since a SDE can generate unlimited numbers of trajectories, it is difficult to estimatemodel parameters based on experimental observationswhichmay represent only one trajectory of the stochastic model. Although substantial research efforts have been made to develop effective methods, it is still a challenge to infer unknown parameters in SDE models from observations that may have large variations. Using an interest rate model as a test problem, in this work we use the Bayesian inference and Markov Chain Monte Carlo method to estimate unknown parameters in SDE models.
引用
收藏
页数:8
相关论文
共 50 条