Comments on "Dynamics of the general Lorenz family" by Y. Liu and W. Pang

被引:4
作者
Algaba, Antonio [1 ]
Fernandez-Sanchez, Fernando [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Ctr Invest Fis Teor & Matemat FIMAT, Dept Matemat, Huelva 21071, Spain
[2] Univ Seville, Dept Appl Math 2, ES Ingenieros, Seville 41092, Spain
关键词
General Lorenz family; Equilibrium; Homoclinic orbits; Heteroclinic orbits; degenerate heteroclinic cycle; Chen system; Lu system; EXPONENTIALLY ATTRACTIVE SET; POSITIVE INVARIANT SET; SILNIKOV-TYPE ORBITS; CONSTRUCTIVE PROOF; CHAOTIC ATTRACTOR; HOMOCLINIC ORBITS; SYSTEMS; EXISTENCE;
D O I
10.1007/s11071-013-1142-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A paper, "Dynamics of the general Lorenz family," was published in the journal Nonlinear Dynamics. The authors investigate the general Lorenz family , , , considering that it contains four independent parameters. However, we show that, generically (for c not equal 0), this family is equivalent to the Lorenz system and, thus, the results they provide for the general Lorenz family are easily obtained from the corresponding results on the Lorenz system. Moreover, in the case c=0, it is sufficient to consider a two-parameter system.
引用
收藏
页码:887 / 891
页数:5
相关论文
共 23 条
[1]   Comments on 'Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces' [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 266 :80-82
[2]   Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, XX Liao, SL Xie, YL Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (03) :758-761
[3]   The Lu system is a particular case of the Lorenz system [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
PHYSICS LETTERS A, 2013, 377 (39) :2771-2776
[4]   Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
CHAOS, 2013, 23 (03)
[5]   On Darboux polynomials and rational first integrals of the generalized Lorenz system [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (03) :317-322
[6]   Comment on Silnikov-type orbits of Lorenz-family systems' [Physica A 375 (2007) 438-446] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (19) :4252-4257
[7]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[8]   Lorenz equations .1. Existence and nonexistence of homoclinic orbits [J].
Chen, XF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1057-1069
[9]  
Craioveanu M., 2008, Bul. Acad. Stiinte Repub. Mold. Mat., P57
[10]   Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I [J].
Hiroshi Kokubu ;
Robert Roussarie .
Journal of Dynamics and Differential Equations, 2004, 16 (2) :513-557