Images of two-dimensional motivic Galois representations

被引:0
作者
Schneider, K [1 ]
机构
[1] Univ Regensburg, NWF I, D-93040 Regensburg, Germany
关键词
D O I
10.1007/s00229-003-0401-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a two-dimensional motive which is pure of weight w over a number field K and let (phi(l): G(K)-->Aut(H-l(M))(l) be the system of the l-adic realizations. Choose G(K)-invariant Z(l)-lattices T-l of H-l(M) and let (phi(l): G(K)-->GL(T-l))(l) be the corresponding system of integral representations. Then either for almost all primes phi(l)(G(K)) consist of all the elements of GL(T-l) with determinant in (Z*(l))(-w) or the system (phi(l)) is associated to algebraic Hecke characters. We also can prove an adelic version of our results.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 20 条
[1]  
[Anonymous], PUBL MATH DEC
[2]  
[Anonymous], ENDLICHE GRUPPEN 1
[3]  
Berthelot P., 1974, Lecture Notes in Mathematics, V407
[4]  
Deligne P., 1969, Sem. Bourbaki, V355
[5]  
Deligne P., 1979, Proc. Sympos. Pure Math., V33, P313
[6]  
Faltings G., 1988, J. Amer. Math. Soc, V1, P255, DOI 10.2307/1990970
[7]  
Fontaine J. M., 1987, Cont. Math, V67, P179
[8]  
FONTAINE JM, 1994, ASTERISQUE, P113
[9]   HIPPOCAMPAL RHYTHMIC SLOW ACTIVITY (RSA) DURING ANIMAL HYPNOSIS IN THE RABBIT [J].
FONTANI, G ;
GRAZZI, F ;
LOMBARDI, G ;
CARLI, G .
BEHAVIOURAL BRAIN RESEARCH, 1982, 6 (01) :15-24
[10]   MOTIVES, NUMERICAL EQUIVALENCE, AND SEMISIMPLICITY [J].
JANNSEN, U .
INVENTIONES MATHEMATICAE, 1992, 107 (03) :447-452