Many-body reduced fidelity susceptibility in Lipkin-Meshkov-Glick model

被引:16
|
作者
Ma, Jian [1 ]
Wang, Xiaoguang [2 ]
Gu, Shi-Jian [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys & ITP, Hong Kong 999077, Hong Kong, Peoples R China
[2] Zhejiang Univ, Dept Phys, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 02期
关键词
critical points; entropy; phase transformations; quantum entanglement; APPROXIMATION METHODS; DENSITY-MATRICES; SOLVABLE MODEL; QUANTUM; VALIDITY;
D O I
10.1103/PhysRevE.80.021124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the reduced fidelity susceptibility chi(r) for an M-body subsystem of an N-body Lipkin-Meshkov-Glick model with tau=M/N fixed. The reduced fidelity susceptibility can be viewed as the response of subsystem to a certain parameter. In noncritical region, the inner correlation of the system is weak, and chi(r) behaves similar with the global fidelity susceptibility chi(g), the ratio eta=chi(r)/chi(g) depends on tau but not on N. However, at the critical point, the inner correlation tends to be divergent, and we find chi(r) approaches chi(g) with increasing the N. It is interesting to note that, eta=1 in the thermodynamic limit, which means the susceptibilities of the local and global system are the same. Finally, we make numerical computations, and they are in perfect agreement with the analytical predictions.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Information diagrams in the study of entanglement in symmetric multi-quDit systems and applications to quantum phase transitions in Lipkin-Meshkov-Glick D-level atom models
    Guerrero, Julio
    Mayorgas, Alberto
    Calixto, Manuel
    QUANTUM INFORMATION PROCESSING, 2022, 21 (06)
  • [42] Reduced Density Matrix of Permutational Invariant Many-body Systems
    Salerno, Mario
    Popkov, Vladislav
    ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (01) : 75 - 89
  • [43] Fidelity of the diagonal ensemble signals the many-body localization transition
    Hu, Taotao
    Xue, Kang
    Li, Xiaodan
    Zhang, Yan
    Ren, Hang
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [44] Microwave Susceptibility Observation of Interacting Many-Body Andreev States
    Fatemi, V
    Kurilovich, P. D.
    Hays, M.
    Bouman, D.
    Connolly, T.
    Diamond, S.
    Frattini, N. E.
    Kurilovich, V. D.
    Krogstrup, P.
    Nygard, J.
    Geresdi, A.
    Glazman, L., I
    Devoret, M. H.
    PHYSICAL REVIEW LETTERS, 2022, 129 (22)
  • [45] Entanglement dynamics in the many-body Hatano-Nelson model
    Orito, Takahiro
    Imura, Ken-Ichiro
    PHYSICAL REVIEW B, 2023, 108 (21)
  • [46] Dynamical many-body localization in an integrable model
    Keser, Aydin Cem
    Ganeshan, Sriram
    Refael, Gil
    Galitski, Victor
    PHYSICAL REVIEW B, 2016, 94 (08)
  • [47] Onset of many-body chaos in the O(N) model
    Chowdhury, Debanjan
    Swingle, Brian
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [48] Enhanced many-body localization in a kinetically constrained model
    Royen, Karl
    Mondal, Suman
    Pollmann, Frank
    Heidrich-Meisner, Fabian
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [49] Solution of a Minimal Model for Many-Body Quantum Chaos
    Chan, Amos
    De Luca, Andrea
    Chalker, J. T.
    PHYSICAL REVIEW X, 2018, 8 (04):
  • [50] Controlling quantum many-body systems using reduced-order modeling
    Luchnikov, I. A.
    Gavreev, M. A.
    Fedorov, A. K.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):