Many-body reduced fidelity susceptibility in Lipkin-Meshkov-Glick model

被引:16
|
作者
Ma, Jian [1 ]
Wang, Xiaoguang [2 ]
Gu, Shi-Jian [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys & ITP, Hong Kong 999077, Hong Kong, Peoples R China
[2] Zhejiang Univ, Dept Phys, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 02期
关键词
critical points; entropy; phase transformations; quantum entanglement; APPROXIMATION METHODS; DENSITY-MATRICES; SOLVABLE MODEL; QUANTUM; VALIDITY;
D O I
10.1103/PhysRevE.80.021124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the reduced fidelity susceptibility chi(r) for an M-body subsystem of an N-body Lipkin-Meshkov-Glick model with tau=M/N fixed. The reduced fidelity susceptibility can be viewed as the response of subsystem to a certain parameter. In noncritical region, the inner correlation of the system is weak, and chi(r) behaves similar with the global fidelity susceptibility chi(g), the ratio eta=chi(r)/chi(g) depends on tau but not on N. However, at the critical point, the inner correlation tends to be divergent, and we find chi(r) approaches chi(g) with increasing the N. It is interesting to note that, eta=1 in the thermodynamic limit, which means the susceptibilities of the local and global system are the same. Finally, we make numerical computations, and they are in perfect agreement with the analytical predictions.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Generalized Lipkin-Meshkov-Glick models of Haldane-Shastry type
    Carrasco, Jose A.
    Finkel, Federico
    Gonzalez-Lopez, Artemio
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [22] Emulating the generator coordinate method with extended eigenvector continuation for the Lipkin-Meshkov-Glick model
    Luo, Q. Y.
    Zhang, X.
    Chen, L. H.
    Yao, J. M.
    PHYSICAL REVIEW C, 2024, 110 (01)
  • [23] Krylov complexity and dynamical phase transition in the quenched Lipkin-Meshkov-Glick model
    Bento, Pedro H. S.
    del Campo, Adolfo
    Celeri, Lucas C.
    PHYSICAL REVIEW B, 2024, 109 (22)
  • [25] Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    Vergara, J. David
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [26] Quantum otto machine in Lipkin-Meshkov-Glick model with magnetic field and a symmetric cross interaction
    Abd-Rabbou, M. Y.
    Khalil, E. M.
    Al-Awfi, Saud
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [27] Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Dynamical aspects
    Khalouf-Rivera, J.
    Gamito, J.
    Perez-Bernal, F.
    Arias, J. M.
    Perez-Fernandez, P.
    PHYSICAL REVIEW E, 2023, 107 (06)
  • [28] Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Static aspects
    Gamito, J.
    Khalouf-Rivera, J.
    Arias, J. M.
    Perez-Fernandez, P.
    Perez-Bernal, F.
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [29] Excited-state quantum phase transitions and the entropy of the work distribution in the anharmonic Lipkin-Meshkov-Glick model
    Zhang, Haiting
    Qian, Yifan
    Niu, Zhen-Xia
    Wang, Qian
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [30] Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies
    Carrasco, Jose A.
    Finkel, Federico
    Gonzalez-Lopez, Artemio
    Rodriguez, Miguel A.
    Tempesta, Piergiulio
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,