Many-body reduced fidelity susceptibility in Lipkin-Meshkov-Glick model

被引:16
作者
Ma, Jian [1 ]
Wang, Xiaoguang [2 ]
Gu, Shi-Jian [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys & ITP, Hong Kong 999077, Hong Kong, Peoples R China
[2] Zhejiang Univ, Dept Phys, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 02期
关键词
critical points; entropy; phase transformations; quantum entanglement; APPROXIMATION METHODS; DENSITY-MATRICES; SOLVABLE MODEL; QUANTUM; VALIDITY;
D O I
10.1103/PhysRevE.80.021124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the reduced fidelity susceptibility chi(r) for an M-body subsystem of an N-body Lipkin-Meshkov-Glick model with tau=M/N fixed. The reduced fidelity susceptibility can be viewed as the response of subsystem to a certain parameter. In noncritical region, the inner correlation of the system is weak, and chi(r) behaves similar with the global fidelity susceptibility chi(g), the ratio eta=chi(r)/chi(g) depends on tau but not on N. However, at the critical point, the inner correlation tends to be divergent, and we find chi(r) approaches chi(g) with increasing the N. It is interesting to note that, eta=1 in the thermodynamic limit, which means the susceptibilities of the local and global system are the same. Finally, we make numerical computations, and they are in perfect agreement with the analytical predictions.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Entanglement scaling in critical two-dimensional fermionic and bosonic systems [J].
Barthel, T. ;
Chung, M. -C. ;
Schollwoeck, U. .
PHYSICAL REVIEW A, 2006, 74 (02)
[2]   Entanglement entropy beyond the free case [J].
Barthel, Thomas ;
Dusuel, Sebastien ;
Vidal, Julien .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)
[3]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[4]   SIZE SCALING FOR INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R ;
PFEUTY, P .
PHYSICAL REVIEW LETTERS, 1982, 49 (07) :478-481
[5]   Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model [J].
Buonsante, P. ;
Vezzani, A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[7]   Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction [J].
Chen, Shu ;
Wang, Li ;
Gu, Shi-Jian ;
Wang, Yupeng .
PHYSICAL REVIEW E, 2007, 76 (06)
[8]   Quantum superposition states of Bose-Einstein condensates [J].
Cirac, JI ;
Lewenstein, M ;
Molmer, K ;
Zoller, P .
PHYSICAL REVIEW A, 1998, 57 (02) :1208-1218
[9]   Quantum fidelity and quantum phase transitions in matrix product states [J].
Cozzini, Marco ;
Ionicioiu, Radu ;
Zanardi, Paolo .
PHYSICAL REVIEW B, 2007, 76 (10)
[10]   Quantum phase transitions and quantum fidelity in free fermion graphs [J].
Cozzini, Marco ;
Giorda, Paolo ;
Zanardi, Paolo .
PHYSICAL REVIEW B, 2007, 75 (01)