Many-body reduced fidelity susceptibility in Lipkin-Meshkov-Glick model

被引:16
|
作者
Ma, Jian [1 ]
Wang, Xiaoguang [2 ]
Gu, Shi-Jian [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys & ITP, Hong Kong 999077, Hong Kong, Peoples R China
[2] Zhejiang Univ, Dept Phys, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 02期
关键词
critical points; entropy; phase transformations; quantum entanglement; APPROXIMATION METHODS; DENSITY-MATRICES; SOLVABLE MODEL; QUANTUM; VALIDITY;
D O I
10.1103/PhysRevE.80.021124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the reduced fidelity susceptibility chi(r) for an M-body subsystem of an N-body Lipkin-Meshkov-Glick model with tau=M/N fixed. The reduced fidelity susceptibility can be viewed as the response of subsystem to a certain parameter. In noncritical region, the inner correlation of the system is weak, and chi(r) behaves similar with the global fidelity susceptibility chi(g), the ratio eta=chi(r)/chi(g) depends on tau but not on N. However, at the critical point, the inner correlation tends to be divergent, and we find chi(r) approaches chi(g) with increasing the N. It is interesting to note that, eta=1 in the thermodynamic limit, which means the susceptibilities of the local and global system are the same. Finally, we make numerical computations, and they are in perfect agreement with the analytical predictions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Universality of the negativity in the Lipkin-Meshkov-Glick model
    Wichterich, Hannu
    Vidal, Julien
    Bose, Sougato
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [2] SPECTRAL GAP OF THE ANTIFERROMAGNETIC LIPKIN-MESHKOV-GLICK MODEL
    Unanyan, R. G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 195 (02) : 718 - 728
  • [3] Lipkin-Meshkov-Glick model in a quantum Otto cycle
    Cakmak, Selcuk
    Altintas, Ferdi
    Mustecaplioglu, Ozgur E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (06):
  • [4] Floquet time crystal in the Lipkin-Meshkov-Glick model
    Russomanno, Angelo
    Iemini, Fernando
    Dalmonte, Marcello
    Fazio, Rosario
    PHYSICAL REVIEW B, 2017, 95 (21)
  • [5] Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model
    Kopylov, Wassilij
    Schaller, Gernot
    Brandes, Tobias
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [6] Polaron-transformed dissipative Lipkin-Meshkov-Glick model
    Kopylov, Wassilij
    Schaller, Gernot
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [7] Entanglement mean field theory: Lipkin-Meshkov-Glick Model
    Sen, Aditi
    Sen, Ujjwal
    QUANTUM INFORMATION PROCESSING, 2012, 11 (03) : 675 - 683
  • [8] Thermalization of the Lipkin-Meshkov-Glick model in blackbody radiation
    Macri, T.
    Ostilli, M.
    Presilla, C.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [9] Time scales at quantum phase transitions in the Lipkin-Meshkov-Glick model
    de Los Santos, F.
    Romera, E.
    Castanos, O.
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [10] Energy level splitting and parity oscillation in Lipkin-Meshkov-Glick model
    Yu Yi-Xiang
    Song Ning-Fang
    Liu Wu-Ming
    ACTA PHYSICA SINICA, 2018, 67 (18)