New types of localized coherent structures in the Bogoyavlenskii-Schiff equation

被引:24
作者
Peng, Yan-ze [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
关键词
the singular structure analysis; the localized coherent structure; the Bogoyavlenskii-Schiff equation;
D O I
10.1007/s10773-006-9139-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the singular structure analysis, we derive some new types of localized coherent structures for the Bogoyavlenskii-Schiff equation by suitably utilizing the arbitrary function present in the singular manifold equations.
引用
收藏
页码:1779 / 1783
页数:5
相关论文
共 8 条
[1]  
Bogoyavlenskii O I., 1990, Math. USSR Izv, V34, P245, DOI [10.1070/IM1990v034n02ABEH000628, DOI 10.1070/IM1990V034N02ABEH000628]
[2]   SCATTERING OF LOCALIZED SOLITONS IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1988, 132 (8-9) :432-439
[4]   COHERENT STRUCTURES IN MULTIDIMENSIONS [J].
FOKAS, AS ;
SANTINI, PM .
PHYSICAL REVIEW LETTERS, 1989, 63 (13) :1329-1333
[5]   RESONANT BEHAVIOR IN THE DAVEY-STEWARTSON EQUATION [J].
GILSON, CR .
PHYSICS LETTERS A, 1992, 161 (05) :423-428
[6]   MULTIDROMION SOLUTIONS TO THE DAVEY-STEWARTSON EQUATION [J].
HIETARINTA, J ;
HIROTA, R .
PHYSICS LETTERS A, 1990, 145 (05) :237-244
[7]  
SCHIFF J., 1992, PAINLEVE TRANSCENDEN
[8]   The Bogoyavlenskii-Schiff hierarchy and integrable equations in (2+1) dimensions [J].
Toda, K ;
Yu, SJ ;
Fukuyama, T .
REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) :247-254