Sustainable and Renewable Bio-Based Natural Fibres and Its Application for 3D Printed Concrete: A Review

被引:59
作者
Luhar, Salmabanu [1 ]
Suntharalingam, Thadshajini [2 ]
Navaratnam, Satheeskumar [3 ]
Luhar, Ismail [4 ]
Thamboo, Julian [5 ]
Poologanathan, Keerthan [2 ]
Gatheeshgar, Perampalam [2 ]
机构
[1] Natl Taipei Univ Technol, Inst Mineral Resources Engn, Taipei 10608, Taiwan
[2] Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[3] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[4] Shri Jagdishprasad Jhabarmal Tibrewala Univ, Jhunjhunu 333001, Rajasthan, India
[5] South Eastern Univ Sri Lanka, Dept Civil Engn, Oluvil 32360, Sri Lanka
关键词
natural fibres; sustainability; renewable materials; mechanical properties; 3D printed concrete; PLASTICIZED WHEAT GLUTEN; MECHANICAL-PROPERTIES; BANANA FIBER; POLYMERIC COMPOSITES; HARDENED PROPERTIES; WATER-ABSORPTION; FATIGUE BEHAVIOR; SISAL FIBER; THERMOPHYSICAL PROPERTIES; BIODEGRADABLE COMPOSITES;
D O I
10.3390/su122410485
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The concept of sustainability and the utilization of renewable bio-based sources have gained prominent attention in the construction industry. Material selection in construction plays a significant role in design and manufacturing process of sustainable building construction. Several studies are being carried out worldwide to investigate the potential use of natural fibres as reinforcement in concrete with its noticeable environmental benefits and mechanical properties. 3D printed concrete (3DPC) is another emerging technology, which has been under-developed for the past decade. The integration of reinforcement is one of the major challenges in the application of this new technology in real-life scenario. Presently, artificial fibres have been used as a reinforcement material for this special printable concrete mixture. However, natural fibre composites have received significant attention by many 3DPC constructions due to their lightweight energy conservation and environmentally friendly nature. These benchmarking characteristics unlock the wider area of natural fibres into the composite sector and challenge the substitution of artificial fibres. Hence, this paper presents a comprehensive review on the current practice and advantages of natural fibres in conventional concrete construction. Subsequently, with a view to the future efficient 3DPC construction, the potentials of natural fibres such as eco-friendly, higher impact, thermal, structural, and fire performance over the artificial fibres were highlighted, and their applicability in 3DPC as composites was recommended.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 172 条
[1]   A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties [J].
Ahmad, Furqan ;
Choi, Heung Soap ;
Park, Myung Kyun .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2015, 300 (01) :10-24
[2]   Elastic properties, notched strength and fracture criterion in untreated woven jute-glass fabric reinforced polyester hybrid composites [J].
Ahmed, K. Sabeel ;
Vijayarangan, S. ;
Naidu, A. C. B. .
MATERIALS & DESIGN, 2007, 28 (08) :2287-2294
[3]   Kenaf fiber reinforced composites: A review [J].
Akil, H. M. ;
Omar, M. F. ;
Mazuki, A. A. M. ;
Safiee, S. ;
Ishak, Z. A. M. ;
Abu Bakar, A. .
MATERIALS & DESIGN, 2011, 32 (8-9) :4107-4121
[4]   Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry [J].
AL-Oqla, Faris M. ;
Sapuan, S. M. .
JOURNAL OF CLEANER PRODUCTION, 2014, 66 :347-354
[5]   Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing [J].
Al-Qutaifi, Sarah ;
Nazari, Ali ;
Bagheri, Ali .
CONSTRUCTION AND BUILDING MATERIALS, 2018, 176 :690-699
[6]   Ecodesign of automotive components making use of natural jute fiber composites [J].
Alves, C. ;
Ferrao, P. M. C. ;
Silva, A. J. ;
Reis, L. G. ;
Freitas, M. ;
Rodrigues, L. B. ;
Alves, D. E. .
JOURNAL OF CLEANER PRODUCTION, 2010, 18 (04) :313-327
[7]   Estimation of the tensile strength of an oriented flax fiber-reinforced polymer composite [J].
Andersons, J. ;
Joffe, R. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2011, 42 (09) :1229-1235
[8]   Cellulosic fiber reinforced cement-based composites: A review of recent research [J].
Ardanuy, Monica ;
Claramunt, Josep ;
Toledo Filho, Romildo Dias .
CONSTRUCTION AND BUILDING MATERIALS, 2015, 79 :115-128
[9]   Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction [J].
Arunothayan, Arun R. ;
Nematollahi, Behzad ;
Ranade, Ravi ;
Bong, Shin Hau ;
Sanjayan, Jay .
CONSTRUCTION AND BUILDING MATERIALS, 2020, 257
[10]   Effect of Alkali and Silane Treatments on Mechanical and Fibre-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres [J].
Asim, Mohammad ;
Jawaid, Mohammad ;
Abdan, Khalina ;
Ishak, Mohamad Ridzwan .
JOURNAL OF BIONIC ENGINEERING, 2016, 13 (03) :426-435