Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy

被引:43
作者
Burns, Jonathan R. [1 ]
Howorka, Stefan [1 ]
机构
[1] UCL, Inst Struct Mol Biol, Dept Chem, London WC1H 0AJ, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
DNA; nanopore; membrane topography; exonuclease; membrane biophysics; SOLID-STATE NANOPORES; MEMBRANE CURVATURE; ION CHANNELS; EXTRACELLULAR NUCLEASES; PSEUDOMONAS BAL-31; REAL-TIME; SINGLE; SENSORS; NANOTECHNOLOGY; PROTEINS;
D O I
10.1021/acsnano.7b07835
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanopores are a recent class of bilayer-puncturing nanodevices that can help advance biosensing, synthetic biology, and nanofluidics. Here, we create archetypal lipid-anchored DNA nanopores and characterize them with a nanoprobe-based approach to gain essential information about their interactions with bilayers. The strategy determines the molecular accessibility of DNA pores with a nuclease and can thus distinguish between the nanopores' membrane-adhering and membrane-spanning states. The analysis reveals, for example, that pores interact with bilayers in two steps whereby fast initial membrane tethering is followed by slower reorientation to the puncturing state. Tethering occurs for pores with one anchor, while puncturing requires multiple anchors. Both low and high-curvature membranes are good substrates for tethering, but efficient insertion proceeds only for high-curvature bilayers of the examined lipid composition. This is likely due to the localized lipid misalignments and the associated lower energetic barrier for pore permeation. Our study advances the fields of DNA nanotechnology and nanopores by overcoming the considerable experimental hurdle of efficient membrane insertion. It also provides mechanistic insights to aid the design of advanced nanopores, and offers a useful route to probe bilayer orientation of DNA nanostructures.
引用
收藏
页码:3263 / 3271
页数:9
相关论文
共 51 条
[1]   Light-activated ion channels for remote control of neuronal firing [J].
Banghart, M ;
Borges, K ;
Isacoff, E ;
Trauner, D ;
Kramer, RH .
NATURE NEUROSCIENCE, 2004, 7 (12) :1381-1386
[2]   DNA Origami Nanopores [J].
Bell, Nicholas A. W. ;
Engst, Christian. R. ;
Ablay, Marc ;
Divitini, Giorgio ;
Ducati, Caterina ;
Liedl, Tim ;
Keyser, Ulrich F. .
NANO LETTERS, 2012, 12 (01) :512-517
[3]  
Burns JR, 2016, NAT NANOTECHNOL, V11, P152, DOI [10.1038/NNANO.2015.279, 10.1038/nnano.2015.279]
[4]   Membrane-Spanning DNA Nanopores with Cytotoxic Effect [J].
Burns, Jonathan R. ;
Al-Juffali, Noura ;
Janes, Sam M. ;
Howorka, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (46) :12466-12470
[5]   Lipid-Bilayer-Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor [J].
Burns, Jonathan R. ;
Goepfrich, Kerstin ;
Wood, James W. ;
Thacker, Vivek V. ;
Stulz, Eugen ;
Keyser, Ulrich F. ;
Howorka, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (46) :12069-12072
[6]   Self-Assembled DNA Nanopores That Span Lipid Bilayers [J].
Burns, Jonathan R. ;
Stulz, Eugen ;
Howorka, Stefan .
NANO LETTERS, 2013, 13 (06) :2351-2356
[7]  
Chen YJ, 2015, NAT NANOTECHNOL, V10, P748, DOI [10.1038/nnano.2015.195, 10.1038/NNANO.2015.195]
[8]   Pore-forming toxins: ancient, but never really out of fashion [J].
Dal Peraro, Matteo ;
van der Goot, F. Gisou .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (02) :77-92
[9]   Rapid prototyping of 3D DNA-origami shapes with caDNAno [J].
Douglas, Shawn M. ;
Marblestone, Adam H. ;
Teerapittayanon, Surat ;
Vazquez, Alejandro ;
Church, George M. ;
Shih, William M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (15) :5001-5006
[10]  
Feng JD, 2015, NAT NANOTECHNOL, V10, P1070, DOI [10.1038/nnano.2015.219, 10.1038/NNANO.2015.219]