Langmuir probe-based observables for plasma-turbulence code validation and application to the TORPEX basic plasma physics experiment

被引:40
作者
Ricci, Paolo [1 ]
Theiler, C. [1 ]
Fasoli, A. [1 ]
Furno, I. [1 ]
Labit, B. [1 ]
Mueller, S. H. [2 ]
Podesta, M. [3 ]
Poli, F. M. [4 ]
机构
[1] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc EURATOM Confederat Suisse, CH-1015 Lausanne, Switzerland
[2] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[4] Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Langmuir probes; plasma simulation; plasma transport processes; plasma turbulence; WAVE-NUMBER; MAGNETIC RECONNECTION; TRANSPORT; PARAMETERS;
D O I
10.1063/1.3082698
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The methodology for plasma-turbulence code validation is discussed, with focus on the quantities to use for the simulation-experiment comparison, i.e., the validation observables, and application to the TORPEX basic plasma physics experiment [A. Fasoli , Phys. Plasmas 13, 055902 (2006)]. The considered validation observables are deduced from Langmuir probe measurements and are ordered into a primacy hierarchy, according to the number of model assumptions and to the combinations of measurements needed to form each of them. The lowest levels of the primacy hierarchy correspond to observables that require the lowest number of model assumptions and measurement combinations, such as the statistical and spectral properties of the ion saturation current time trace, while at the highest levels, quantities such as particle transport are considered. The comparison of the observables at the lowest levels in the hierarchy is more stringent than at the highest levels. Examples of the use of the proposed observables are applied to a specific TORPEX plasma configuration characterized by interchange-driven turbulence.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Study of statistical properties of edge turbulence in the National Spherical Torus Experiment with the gas puff imaging diagnostic [J].
Agostini, M. ;
Zweben, S. J. ;
Cavazzana, R. ;
Scarin, P. ;
Serianni, G. ;
Maqueda, R. J. ;
Stotler, D. P. .
PHYSICS OF PLASMAS, 2007, 14 (10)
[2]   ESTIMATION OF WAVENUMBER AND FREQUENCY-SPECTRA USING FIXED PROBE PAIRS [J].
BEALL, JM ;
KIM, YC ;
POWERS, EJ .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (06) :3933-3940
[3]  
Birn J, 2001, J GEOPHYS RES-SPACE, V106, P3715, DOI 10.1029/1999JA900449
[4]   Simulation of plasma transport by coherent structures in scrape-off-layer tokamak plasmas [J].
Bisai, N ;
Das, A ;
Deshpande, S ;
Jha, R ;
Kaw, P ;
Sen, A ;
Singh, R .
PHYSICS OF PLASMAS, 2004, 11 (08) :4018-4024
[5]  
Chen F.F., 1965, PLASMA DIAGNOSTIC TE, DOI DOI 10.1017/S0022377800003160
[6]   INSTANTANEOUS DIRECT-DISPLAY SYSTEM OF PLASMA PARAMETERS BY MEANS OF TRIPLE PROBE [J].
CHEN, SL ;
SEKIGUCHI, T .
JOURNAL OF APPLIED PHYSICS, 1965, 36 (08) :2363-+
[7]   Electric probes for plasmas: The link between theory and instrument [J].
Demidov, VI ;
Ratynskaia, SV ;
Rypdal, K .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (10) :3409-3439
[8]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[9]   Electrostatic turbulence and transport in a simple magnetized plasma [J].
Fasoli, A. ;
Labit, B. ;
McGrath, M. ;
Mueller, S. H. ;
Plyushchev, G. ;
Podesta, M. ;
Poli, F. M. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[10]   Mechanism for blob generation in the TORPEX toroidal plasma [J].
Furno, I. ;
Labit, B. ;
Fasoli, A. ;
Poli, F. M. ;
Ricci, P. ;
Theiler, C. ;
Brunner, S. ;
Diallo, A. ;
Graves, J. P. ;
Podesta, M. ;
Mueller, S. H. .
PHYSICS OF PLASMAS, 2008, 15 (05)