A Deep Learning Based Acceleration of Complex Satellite Resource Management Problem

被引:0
作者
Abdu, Tedros Salih [1 ]
Kisseleff, Steven [1 ]
Lei, Lei [2 ]
Lagunas, Eva [1 ]
Grotz, Joel [3 ]
Chatzinotas, Symeon [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, Luxembourg, Luxembourg
[2] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian, Peoples R China
[3] SES Engn, Betzdorf, Luxembourg
来源
2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022) | 2022年
关键词
Bandwidth allocation; deep learning; power allocation; OPTIMIZATION; PAYLOAD;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Demand-based algorithms have been widely studied in the satellite community, where the satellite's radio resources are allocated according to the on-ground users' demands. Hence, we can accommodate the increasing demand while efficiently utilizing satellite resources. However, these algorithms have high computational time because they are required to optimize more parameters, which hinders the practical implementation of the algorithms. In this paper, we propose a methodology to alleviate the computational complexity of demand-aware bandwidth and power allocation algorithm by combining conventional optimization and deep learning (DL). Hence, conventional optimization allocates the radio resources, while DL accelerates the computation. The simulation result shows that the proposed approach has lower computational time while efficiently utilizing the resource of the satellite.
引用
收藏
页码:1092 / 1096
页数:5
相关论文
共 14 条
  • [1] Abdu T. S., 2021, IEEE T WIREL COMMUN, P1
  • [2] Power Allocation in Multibeam Satellite Systems: A Two-Stage Multi-Objective Optimization
    Aravanis, Alexis I.
    Shankar, Bhavani M. R.
    Arapoglou, Pantelis-Daniel
    Danoy, Gregoire
    Cottis, Panayotis G.
    Ottersten, Bjoern
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (06) : 3171 - 3182
  • [3] Radio Resource Management Optimization of Flexible Satellite Payloads for DVB-S2 Systems
    Cocco, Giuseppe
    de Cola, Tomaso
    Angelone, Martina
    Katona, Zoltan
    Erl, Stefan
    [J]. IEEE TRANSACTIONS ON BROADCASTING, 2018, 64 (02) : 266 - 280
  • [4] Dynamic Energy-Efficient Power Allocation in Multibeam Satellite Systems
    Efrem, Christos N.
    Panagopoulos, Athanasios D.
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) : 228 - 231
  • [5] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [6] Multi-Agent Deep Reinforcement Learning-Based Flexible Satellite Payload for Mobile Terminals
    Hu, Xin
    Liao, Xianglai
    Liu, Zhijun
    Liu, Shuaijun
    Ding, Xin
    Helaoui, Mohamed
    Wang, Weidong
    Ghannouchi, Fadhel M.
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (09) : 9849 - 9865
  • [7] Radio Resource Management Techniques for Multibeam Satellite Systems
    Kisseleff, Steven
    Lagunas, Eva
    Abdu, Tedros Salih
    Chatzinotas, Symeon
    Ottersten, Bjorn
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (08) : 2448 - 2452
  • [8] Learning-Assisted Optimization for Energy-Efficient Scheduling in Deadline-Aware NOMA Systems
    Lei, Lei
    You, Lei
    He, Qing
    Vu, Thang X.
    Chatzinotas, Symeon
    Yuan, Di
    Ottersten, Bjorn
    [J]. IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2019, 3 (03): : 615 - 627
  • [9] Joint Pricing and Power Allocation for Multibeam Satellite Systems With Dynamic Game Model
    Li, Feng
    Lam, Kwok-Yan
    Liu, Xin
    Wang, Jian
    Zhao, Kanglian
    Wang, Li
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (03) : 2398 - 2408
  • [10] Artificial Intelligence Algorithms for Power Allocation in High Throughput Satellites: A Comparison
    Luis, Juan Jose Garau
    Pachler, Nils
    Guerster, Markus
    del Portillo, Inigo
    Crawley, Edward
    Cameron, Bruce
    [J]. 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,