Basic leucine zipper transcription factor SIbZIP1 mediates salt and drought stress tolerance in tomato

被引:103
|
作者
Zhu, Mingku [1 ,2 ]
Meng, Xiaoqing [1 ,2 ]
Cai, Jing [1 ,2 ]
Li, Ge [1 ,2 ]
Dong, Tingting [1 ,2 ]
Li, Zongyun [1 ,2 ]
机构
[1] Jiangsu Normal Univ, Sch Life Sci, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
[2] Jiangsu Normal Univ, Jiangsu Key Lab Phylogen & Comparat Genom, Xuzhou, Jiangsu, Peoples R China
来源
BMC PLANT BIOLOGY | 2018年 / 18卷
基金
中国国家自然科学基金;
关键词
Abscisic acid; Drought stress; Salt stress; SIbZIP1; Tomato; GENOME-WIDE IDENTIFICATION; CONFERS DROUGHT; FACTOR FAMILY; POSITIVE REGULATOR; GENE; ABA; EXPRESSION; SALINITY; NETWORKS; OVEREXPRESSION;
D O I
10.1186/s12870-018-1299-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Basic region/leucine zipper (bZIP) transcription factors perform as crucial regulators in ABA-mediated stress response in plants. Nevertheless, the functions for most bZIP family members in tomato remain to be deciphered. Results: Here we examined the functional characterization of SIbZIP1 under salt and drought stresses in tomato. Silencing of SIbZIP1 in tomato resulted in reduced expression of multiple ABA biosynthesis- and signal transduction-related genes in transgenic plants. In stress assays, SIbZIP1-RNAi transgenic plants exhibited reduced tolerance to salt and drought stresses compared with WT plants, as are evaluated by multiple physiological parameters associated with stress responses, such as decreased ABA, chlorophyll contents and CAT activity, and increased MDA content. In addition, RNA-seq analysis of transgenic plants revealed that the transcription levels of multiple genes encoding defense proteins related to responses to abiotic stress (e.g. endochitinase, peroxidases, and lipid transfer proteins) and biotic stress (e.g. pathogenesis-related proteins) were downregulated in SIbZIP1-RNAi plants, suggesting that SIbZIP1 plays a role in regulating the genes related to biotic and abiotic stress response. Conclusions: Collectively, the data suggest that SIbZIP1 exerts an essential role in salt and drought stress tolerance through modulating an ABA-mediated pathway, and SIbZIP1 may hold potential applications in the engineering of salt- and drought-tolerant tomato cultivars.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato
    Mingku Zhu
    Xiaoqing Meng
    Jing Cai
    Ge Li
    Tingting Dong
    Zongyun Li
    BMC Plant Biology, 18
  • [2] GmTRAB1, a Basic Leucine Zipper Transcription Factor, Positively Regulates Drought Tolerance in Soybean (Glycine max. L)
    Li, Hui
    Zhang, Qiu-Yu
    Xu, Ping
    Wang, Xiao-Hua
    Dai, Sheng-Jie
    Liu, Zhen-Ning
    Xu, Meng
    Cao, Xue
    Cui, Xiao-Yu
    PLANTS-BASEL, 2024, 13 (21):
  • [3] The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato
    Orellana, Sandra
    Yanez, Monica
    Espinoza, Analia
    Verdugo, Isabel
    Gonzalez, Enrique
    Ruiz-Lara, Simon
    Casaretto, Jose A.
    PLANT CELL AND ENVIRONMENT, 2010, 33 (12) : 2191 - 2208
  • [4] The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum
    Gao, Yong-Feng
    Liu, Ji-Kai
    Yang, Feng-Ming
    Zhang, Guo-Yan
    Wang, Dan
    Zhang, Lin
    Ou, Yong-Bin
    Yao, Yin-An
    PHYSIOLOGIA PLANTARUM, 2020, 168 (01) : 98 - 117
  • [5] Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice
    Chen, Hao
    Chen, Wei
    Zhou, Junli
    He, Hang
    Chen, Liangbi
    Chen, Haodong
    Deng, Xing Wang
    PLANT SCIENCE, 2012, 193 : 8 - 17
  • [6] OsbZIP23 and OsbZIP45, members of the rice basic leucine zipper transcription factor family, are involved in drought tolerance
    Park, Su-Hyun
    Jeong, Jin Seo
    Lee, Kang Hyun
    Kim, Youn Shic
    Choi, Yang Do
    Kim, Ju-Kon
    PLANT BIOTECHNOLOGY REPORTS, 2015, 9 (02) : 89 - 96
  • [7] The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum)
    Zhu, Mingku
    Chen, Guoping
    Zhang, Jianling
    Zhang, Yanjie
    Xie, Qiaoli
    Zhao, Zhiping
    Pan, Yu
    Hu, Zongli
    PLANT CELL REPORTS, 2014, 33 (11) : 1851 - 1863
  • [8] Expression of Foxtail Millet bZIP Transcription Factor SibZIP67 Enhances Drought Tolerance in Arabidopsis
    Jia, Xinfeng
    Gao, Hanchi
    Zhang, Lingxin
    Tang, Wei
    Wei, Guo
    Sun, Juan
    Xiong, Wangdan
    BIOMOLECULES, 2024, 14 (08)
  • [9] Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA
    Joo, Joungsu
    Lee, Youn Hab
    Song, Sang Ik
    PLANT BIOTECHNOLOGY REPORTS, 2014, 8 (06) : 431 - 441
  • [10] The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses
    Sun, Xiaoli
    Li, Yong
    Cai, Hua
    Bai, Xi
    Ji, Wei
    Ding, Xiaodong
    Zhu, Yanming
    JOURNAL OF PLANT RESEARCH, 2012, 125 (03) : 429 - 438