Plant Salinity Tolerance Conferred by Arbuscular Mycorrhizal Fungi and Associated Mechanisms: A Meta-Analysis

被引:59
|
作者
Dastogeer, Khondoker M. G. [1 ,2 ]
Zahan, Mst Ishrat
Tahjib-Ul-Arif, Md. [3 ]
Akter, Mst Arjina [2 ]
Okazaki, Shin [1 ]
机构
[1] Tokyo Univ Agr & Technol, Grad Sch Agr, Fuchu, Tokyo, Japan
[2] Bangladesh Agr Univ, Dept Plant Pathol, Mymensingh, Bangladesh
[3] Bangladesh Agr Univ, Dept Biochem & Mol Biol, Mymensingh, Bangladesh
来源
基金
日本学术振兴会;
关键词
AMF; antioxidant; standardized mean difference; plant physiology; photosynthesis; plant biomass; phylogenetic signal; effect size; SALT STRESS; L; PLANTS; PUBLICATION BIAS; RHIZOPHAGUS-IRREGULARIS; PHYLOGENETIC SIGNAL; PROLINE; WATER; HETEROGENEITY; INOCULATION; DROUGHT;
D O I
10.3389/fpls.2020.588550
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity often hinders plant productivity in both natural and agricultural settings. Arbuscular mycorrhizal fungal (AMF) symbionts can mediate plant stress responses by enhancing salinity tolerance, but less attention has been devoted to measuring these effects across plant-AMF studies. We performed a meta-analysis of published studies to determine how AMF symbionts influence plant responses under non-stressed vs. salt-stressed conditions. Compared to non-AMF plants, AMF plants had significantly higher shoot and root biomass (p < 0.0001) both under non-stressed conditions and in the presence of varying levels of NaCl salinity in soil, and the differences became more prominent as the salinity stress increased. Categorical analyses revealed that the accumulation of plant shoot and root biomass was influenced by various factors, such as the host life cycle and lifestyle, the fungal group, and the duration of the AMF and salinity treatments. More specifically, the effect of Funneliformis on plant shoot biomass was more prominent as the salinity level increased. Additionally, under stress, AMF increased shoot biomass more on plants that are dicots, plants that have nodulation capacity and plants that use the C3 plant photosynthetic pathway. When plants experienced short-term stress (<2 weeks), the effect of AMF was not apparent, but under longer-term stress (>4 weeks), AMF had a distinct effect on the plant response. For the first time, we observed significant phylogenetic signals in plants and mycorrhizal species in terms of their shoot biomass response to moderate levels of salinity stress, i.e., closely related plants had more similar responses, and closely related mycorrhizal species had similar effects than distantly related species. In contrast, the root biomass accumulation trait was related to fungal phylogeny only under non-stressed conditions and not under stressed conditions. Additionally, the influence of AMF on plant biomass was found to be unrelated to plant phylogeny. In line with the greater biomass accumulation in AMF plants, AMF improved the water status, photosynthetic efficiency and uptake of Ca and K in plants irrespective of salinity stress. The uptake of N and P was higher in AMF plants, and as the salinity increased, the trend showed a decline but had a clear upturn as the salinity stress increased to a high level. The activities of malondialdehyde (MDA), peroxidase (POD), and superoxide dismutase (SOD) as well as the proline content changed due to AMF treatment under salinity stress. The accumulation of proline and catalase (CAT) was observed only when plants experienced moderate salinity stress, but peroxidase (POD) and superoxide dismutase (SOD) were significantly increased in AMF plants irrespective of salinity stress. Taken together, arbuscular mycorrhizal fungi influenced plant growth and physiology, and their effects were more notable when their host plants experienced salinity stress and were influenced by plant and fungal traits.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Inoculation with Arbuscular Mycorrhizal Fungi Reinforces Tea Plant’s Tolerance to Salinity
    Shasha Guo
    Qi Wang
    Lei Tang
    Tianxin Zhang
    Jiayang Li
    Yao Xiao
    Yuefang Gao
    Juan Bai
    Bin Xiao
    Chunmei Gong
    Journal of Plant Growth Regulation, 2022, 41 : 3498 - 3517
  • [2] Inoculation with Arbuscular Mycorrhizal Fungi Reinforces Tea Plant's Tolerance to Salinity
    Guo, Shasha
    Wang, Qi
    Tang, Lei
    Zhang, Tianxin
    Li, Jiayang
    Xiao, Yao
    Gao, Yuefang
    Bai, Juan
    Xiao, Bin
    Gong, Chunmei
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (08) : 3498 - 3517
  • [3] PRIMING BY ARBUSCULAR MYCORRHIZAL FUNGI OF PLANT ANTIOXIDANT ENZYME PRODUCTION: A META-ANALYSIS
    Lokhandwala, Ami
    Hoeksema, Jason D.
    ANNUAL PLANT REVIEWS ONLINE, 2019, 2 (04): : 1069 - 1083
  • [4] Pathogenic Microbes Increase Plant Dependence on Arbuscular Mycorrhizal Fungi: A Meta-Analysis
    Qin, Mingsen
    Miranda, Jean-Pascal
    Tang, Yun
    Wei, Wangrong
    Liu, Yongjun
    Feng, Huyuan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [5] Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis
    Yang, Haishui
    Zhang, Qian
    Dai, Yajun
    Liu, Qian
    Tang, Jianjun
    Bian, Xinmin
    Chen, Xin
    PLANT AND SOIL, 2015, 389 (1-2) : 361 - 374
  • [6] Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis
    Haishui Yang
    Qian Zhang
    Yajun Dai
    Qian Liu
    Jianjun Tang
    Xinmin Bian
    Xin Chen
    Plant and Soil, 2015, 389 : 361 - 374
  • [7] Role of arbuscular mycorrhizal fungi in cadmium tolerance in rice (Oryza sativa L): a meta-analysis
    Li, Ximei
    Jing, Ruiyong
    Wang, Liyan
    Wu, Nan
    Guo, Zhenhua
    QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS, 2023, 15 (02) : 59 - 70
  • [8] Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis
    Zhang, Shujuan
    Lehmann, Anika
    Zheng, Weishuang
    You, Zhaoyang
    Rillig, Matthias C.
    NEW PHYTOLOGIST, 2019, 222 (01) : 543 - 555
  • [9] Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis
    Han, Yunfeng
    Feng, Jiguang
    Han, Mengguang
    Zhu, Biao
    GLOBAL CHANGE BIOLOGY, 2020, 26 (12) : 7229 - 7241
  • [10] Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism
    Zhang, Wei
    Xia, Kaili
    Feng, Zengwei
    Qin, Yongqiang
    Zhou, Yang
    Feng, Guangda
    Zhu, Honghui
    Yao, Qing
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 208