Perturbations of vortex ring pairs

被引:6
作者
Gubser, Steven S. [1 ]
Horn, Bart [2 ,3 ,4 ,5 ]
Parikh, Sarthak [1 ]
机构
[1] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
[2] Univ Texas Austin, Dept Phys, Theory Grp, Austin, TX 78712 USA
[3] Univ Texas Austin, Texas Cosmol Ctr, Austin, TX 78712 USA
[4] Columbia Univ, Dept Phys, Theory Grp, 538 W 120th St, New York, NY 10027 USA
[5] Columbia Univ, Inst Strings Cosmol & Astroparticle Phys, New York, NY 10027 USA
基金
美国能源部; 美国国家科学基金会;
关键词
INSTABILITY; STABILITY; EQUATION; DYNAMICS; VORTICES; STRINGS;
D O I
10.1103/PhysRevD.93.046001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into twodimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.
引用
收藏
页数:34
相关论文
共 26 条
[1]   The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem [J].
Borisov, Alexey V. ;
Kilin, Alexander A. ;
Mamaev, Ivan S. .
REGULAR & CHAOTIC DYNAMICS, 2013, 18 (1-2) :33-62
[2]  
Brown BM., 2012, Periodic differential operators, Vvol. 228
[3]   Scattering and leapfrogging of vortex rings in a superfluid [J].
Caplan, R. M. ;
Talley, J. D. ;
Carretero-Gonzalez, R. ;
Kevrekidis, P. G. .
PHYSICS OF FLUIDS, 2014, 26 (09)
[4]  
Crow S. C., 1970, AIAA J, V8, P2172, DOI [10.2514/3.6083, DOI 10.2514/3.6083]
[5]  
Dyson F.W., 1893, PHIL T R SOC LOND A, V184, P1041, DOI DOI 10.1098/RSTA.1893.0020
[6]  
Endlich S., ARXIV13033289, Patent No. [1303.3289, 13033289]
[7]   Strings, vortex rings, and modes of instability [J].
Gubser, Steven S. ;
Nayar, Revant ;
Parikh, Sarthak .
NUCLEAR PHYSICS B, 2015, 892 :156-180
[8]  
Hicks W. M., 1922, P ROY SOC LOND A MAT, V102, P111
[9]   Effective string theory for vortex lines in fluids and superfluids [J].
Horn, Bart ;
Nicolis, Alberto ;
Penco, Riccardo .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10)
[10]   Quantum vorticity in nature [J].
Huang, Kerson .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (25)