Further generalizations on some hardy type RL-integral inequalities

被引:2
作者
Dahmani, Zoubir [1 ]
Khameli, Amina [1 ]
Freha, Karima [1 ]
机构
[1] Univ Mostaganem UMAB, Fac Exact Sci & Informat, Lab Pure & Appl Math, Mostaganem 27000, Algeria
关键词
Integral inequalities; Riemann-Liouville integral; Hardy ineqality;
D O I
10.1080/09720502.2020.1754543
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the Riemnn-Liouville fractional integrals to establish new results related to Hardy inequalities. For our results, some result of the paper [A.Khameli et al : New Riemann-Liouville gereralizations for some inequalities of Hardy Type. Malaya J. Mat. 4(2)(2016), 277-283] can be deduced as some special cases.
引用
收藏
页码:1487 / 1495
页数:9
相关论文
共 19 条
  • [1] [Anonymous], 2012, Int. J. Math. Math. Sci.
  • [2] Some Hardy-type inequalities
    Cheung, WS
    Hanjs, Z
    Pecaric, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 621 - 634
  • [3] Dahmani Z, 2012, GEN MATH, V20, P63
  • [4] Fractional integral inequalities and applications
    Denton, Z.
    Vatsala, A. S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1087 - 1094
  • [5] Gorenflo R., 1997, FRACTIONAL CALCULUS, P223, DOI DOI 10.1007/978-3-7091-2664-6_5
  • [6] Hanjs Z., 2000, TAMKANG J MATH, V31, P149
  • [7] Note on a theorem of Hilbert.
    Hardy, GH
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1920, 6 : 314 - 317
  • [8] Some integral inequalities for (k, s) - Riemann-Liouville fractional operators
    Houas, Mohamed
    Dahmani, Zoubir
    Sarikaya, Mehmet Zeki
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1575 - 1585
  • [9] Khameli A., 2016, MALAYA J MAT, V4, P277
  • [10] Kufner A., 2007, The Hardy inequality. About its history and some related results