Weighted uniform consistency of kernel density estimators with general bandwidth sequences

被引:6
作者
Dony, Julia [1 ]
Einmahl, Uwe [1 ]
机构
[1] Free Univ Brussels VUB, Dept Math, B-1050 Brussels, Belgium
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2006年 / 11卷
关键词
kernel density estimator; weighted uniform consistency; convergence rates; uniform in bandwidth; empirical process;
D O I
10.1214/EJP.v11-354
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f(n,h) be a kernel density estimator of a continuous and bounded d-dimensional density f. Let psi(t) be a positive continuous function such that parallel to psi f(beta)parallel to(infinity) < infinity for some 0 < beta < 1/2. We are interested in the rate of consistency of such estimators with respect to the weighted sup-norm determined by psi. This problem has been considered by Gine, Koltchinskii and Zinn ( 2004) for a deterministic bandwidth h(n). We provide "uniform in h" versions of some of their results, allowing us to determine the corresponding rates of consistency for kernel density estimators where the bandwidth sequences may depend on the data and/or the location.
引用
收藏
页码:844 / 859
页数:16
相关论文
共 15 条
[1]  
Deheuvels P, 2000, STAT IND TECHNOL, P477
[2]   General Asymptotic Confidence Bands Based on Kernel-type Function Estimators [J].
Paul Deheuvels ;
David M. Mason .
Statistical Inference for Stochastic Processes, 2004, 7 (3)
[3]   Uniform in bandwidth consistency of kernel-type function estimators [J].
Einmahl, U ;
Mason, DM .
ANNALS OF STATISTICS, 2005, 33 (03) :1380-1403
[4]   An empirical process approach to the uniform consistency of kernel-type function estimators [J].
Einmahl, U ;
Mason, DM .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (01) :1-37
[5]  
Giné E, 2003, PROG PROBAB, V55, P241
[6]   Kernel density estimators:: convergence in distribution for weighted sup-norms [J].
Giné, E ;
Koltchinskii, V ;
Sakhanenko, L .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 130 (02) :167-198
[7]   Weighted uniform consistency of kernel density estimators [J].
Giné, E ;
Koltchinskii, V ;
Zinn, J .
ANNALS OF PROBABILITY, 2004, 32 (3B) :2570-2605
[8]   Rates of strong uniform consistency for multivariate kernel density estimators [J].
Giné, E ;
Guillou, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (06) :907-921
[9]  
Mason D.M., 2003, AUSTRIAN J STAT, V32, P131
[10]  
Pollard D, 1984, SPRINGER SERIES STAT