Crystalline Sb2Te3: Side Surfaces and Disappearance of Dirac Cones

被引:1
作者
Kolobov, Alexander V. [1 ,2 ]
Fons, Paul [2 ,3 ]
Saito, Yuta [2 ]
机构
[1] Herzen State Pedag Univ Russia, Fac Phys, Dept Phys Elect, 48 Moika Embankment, St Petersburg 191186, Russia
[2] Natl Inst Adv Ind Sci & Technol, Device Technol Res Inst, Tsukuba Cent 5, Higashi 1-1-1, Tsukuba, Ibaraki 3058565, Japan
[3] Keio Univ, Fac Sci & Technol, Dept Elect & Elect Engn, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2021年 / 15卷 / 03期
基金
俄罗斯基础研究基金会; 日本学术振兴会;
关键词
Dirac cones; phase-change memory; Sb2Te3; side surfaces; topological insulators;
D O I
10.1002/pssr.202000418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sb2Te3 is an end point of quasibinary GeTe-Sb2Te3 phase-change alloys and also a prototypical topological insulator (TI). TIs are materials that behave like insulators in their interior but whose surfaces are characterized by metallic states with linear dispersion, the so-called Dirac cones. Such surface states are symmetry protected, robust, and are maintained even in the presence of surface defects. It has been tacitly implied that any surfaces of a TI possess this property. Herein, using ab initio simulations, it is demonstrated that cleaving Sb2Te3 along certain side surfaces may lead to the disappearance of Dirac surface states. In particular, it is shown that the (110) surface of the typical TI Sb2Te3 is slightly gapped, whereas the (11 over bar 0) surface is metallic. The significance and potential benefits of the obtained results for practical applications in planar devices and memory cells are discussed.
引用
收藏
页数:6
相关论文
共 20 条
  • [1] Spin- and angle-resolved photoemission on topological materials
    Dil, J. Hugo
    [J]. ELECTRONIC STRUCTURE, 2019, 1 (02):
  • [2] A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    Grimme, Stefan
    Antony, Jens
    Ehrlich, Stephan
    Krieg, Helge
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
  • [3] Colloquium: Topological insulators
    Hasan, M. Z.
    Kane, C. L.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (04) : 3045 - 3067
  • [4] Landau Quantization and the Thickness Limit of Topological Insulator Thin Films of Sb2Te3
    Jiang, Yeping
    Wang, Yilin
    Chen, Mu
    Li, Zhi
    Song, Canli
    He, Ke
    Wang, Lili
    Chen, Xi
    Ma, Xucun
    Xue, Qi-Kun
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (01)
  • [5] Intrinsic Topological Insulator Bi2Te3 Thin Films on Si and Their Thickness Limit
    Li, Yao-Yi
    Wang, Guang
    Zhu, Xie-Gang
    Liu, Min-Hao
    Ye, Cun
    Chen, Xi
    Wang, Ya-Yu
    He, Ke
    Wang, Li-Li
    Ma, Xu-Cun
    Zhang, Hai-Jun
    Dai, Xi
    Fang, Zhong
    Xie, Xin-Cheng
    Liu, Ying
    Qi, Xiao-Liang
    Jia, Jin-Feng
    Zhang, Shou-Cheng
    Xue, Qi-Kun
    [J]. ADVANCED MATERIALS, 2010, 22 (36) : 4002 - 4007
  • [6] Molenkamp L., 2013, CONT CONCEPTS CONDEN, V6, P3
  • [7] SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS
    CHADI, DJ
    [J]. PHYSICAL REVIEW B, 1977, 16 (04): : 1746 - 1747
  • [8] Low-velocity anisotropic Dirac fermions on the side surface of topological insulators
    Moon, Chang-Youn
    Han, Jinhee
    Lee, Hyungjun
    Choi, Hyoung Joon
    [J]. PHYSICAL REVIEW B, 2011, 84 (19):
  • [9] Python']Python Materials Genomics (pymatgen): A robust, open-source python']python library for materials analysis
    Ong, Shyue Ping
    Richards, William Davidson
    Jain, Anubhav
    Hautier, Geoffroy
    Kocher, Michael
    Cholia, Shreyas
    Gunter, Dan
    Chevrier, Vincent L.
    Persson, Kristin A.
    Ceder, Gerbrand
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 : 314 - 319
  • [10] Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865