Iterative Learning Control as a Framework for Human-Inspired Control with Bio-mimetic Actuators

被引:0
作者
Angelini, Franco [1 ,2 ,3 ]
Bianchi, Matteo [1 ,2 ]
Garabini, Manolo [1 ,2 ]
Bicchi, Antonio [1 ,2 ,3 ]
Della Santina, Cosimo [4 ,5 ,6 ]
机构
[1] Univ Pisa, Ctr Ric Enrico Piaggio, Pisa, Italy
[2] Univ Pisa, DII, Pisa, Italy
[3] IIT, Soft Robot Human Cooperat & Rehabil, Genoa, Italy
[4] DLR, Inst Robot & Mechatron, Oberpfaffenhofen, Wessling, Germany
[5] Tech Univ Munich, Dept Informat, Garching, Germany
[6] Delft Univ Technol, Cognit Robot Dept, Delft, Netherlands
来源
BIOMIMETIC AND BIOHYBRID SYSTEMS, LIVING MACHINES 2020 | 2020年 / 12413卷
关键词
Motion and motor control; Natural machine motion; Human-inspired control; SOFT ROBOTS; ADAPTATION;
D O I
10.1007/978-3-030-64313-3_2
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The synergy between musculoskeletal and central nervous systems empowers humans to achieve a high level of motor performance, which is still unmatched in bio-inspired robotic systems. Literature already presents a wide range of robots that mimic the human body. However, under a control point of view, substantial advancements are still needed to fully exploit the new possibilities provided by these systems. In this paper, we test experimentally that an Iterative Learning Control algorithm can be used to reproduce functionalities of the human central nervous system - i.e. learning by repetition, after-effect on known trajectories and anticipatory behavior - while controlling a bio-mimetically actuated robotic arm.
引用
收藏
页码:12 / 16
页数:5
相关论文
共 10 条
  • [1] Decentralized Trajectory Tracking Control for Soft Robots Interacting With the Environment
    Angelini, Franco
    Della Santina, Cosimo
    Garabini, Manolo
    Bianchi, Matteo
    Gasparri, Gian Maria
    Grioli, Giorgio
    Catalano, Manuel Giuseppe
    Bicchi, Antonio
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (04) : 924 - 935
  • [2] Bernstein N.A., 2014, Dexterity and its development
  • [3] A survey of iterative learning control
    Bristow, Douglas A.
    Tharayil, Marina
    Alleyne, Andrew G.
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (03): : 96 - 114
  • [4] Control of a muscle-like soft actuator via a bioinspired approach
    Cao, Jiawei
    Liang, Wenyu
    Zhu, Jian
    Ren, Qinyuan
    [J]. BIOINSPIRATION & BIOMIMETICS, 2018, 13 (06)
  • [5] A Biomimetic Control Method Increases the Adaptability of a Humanoid Robot Acting in a Dynamic Environment
    Capolei, Marie Claire
    Angelidis, Emmanouil
    Falotico, Egidio
    Lund, Henrik Hautop
    Tolu, Silvia
    [J]. FRONTIERS IN NEUROROBOTICS, 2019, 13
  • [6] Controlling Soft Robots
    Della Santina, Cosimo
    Bianchi, Matteo
    Grioli, Giorgio
    Angelini, Franco
    Catalano, Manuel
    Garabini, Manolo
    Bicchi, Antonio
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2017, 24 (03) : 75 - 83
  • [7] Soft Robots that Mimic the Neuromusculoskeletal System
    Garabini, Manolo
    Della Santina, Cosimo
    Bianchi, Matteo
    Catalano, Manuel
    Grioli, Giorgio
    Bicchi, Antonio
    [J]. CONVERGING CLINICAL AND ENGINEERING RESEARCH ON NEUROREHABILITATION II, VOLS 1 AND 2, 2017, 15 : 259 - 263
  • [8] Hoffmann J, 2003, LECT NOTES ARTIF INT, V2684, P44
  • [9] Gravitoinertial force background level affects adaptation to coriolis force perturbations nf reaching movements
    Lackner, JR
    DiZio, P
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (02) : 546 - 553
  • [10] Error Correction, Sensory Prediction, and Adaptation in Motor Control
    Shadmehr, Reza
    Smith, Maurice A.
    Krakauer, John W.
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, VOL 33, 2010, 33 : 89 - 108