Review on Machine Learning Methods for Remaining Useful Lifetime Prediction of Lithium-ion Batteries

被引:4
|
作者
Su, Nicholas Kwong Howe [1 ]
Juwono, Filbert H. [2 ]
Wong, W. K. [1 ]
Chew, I. M. [1 ]
机构
[1] Curtin Univ, Dept Elect & Comp Engn, Miri, Malaysia
[2] Univ Southampton Malaysia, Comp Sci Program, Johor Baharu, Malaysia
来源
2022 INTERNATIONAL CONFERENCE ON GREEN ENERGY, COMPUTING AND SUSTAINABLE TECHNOLOGY (GECOST) | 2022年
关键词
Machine Learning; RUL; Lithium-ion Batteries; SUPPORT VECTOR MACHINE; STATE-OF-HEALTH; NEURAL-NETWORK; MODEL; PROGNOSTICS; DIAGNOSIS; CHARGE; FILTER;
D O I
10.1109/GECOST55694.2022.10010569
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Electric cars are considered as the most ecologically friendly and low-cost means of transportation in the future. As a result, battery technology advancement is of interest for many researchers. Lithium-ion batteries are mostly used for electric vehicles. However, if the Remaining Useful Lifetime (RUL) drops below capacity degradation, devastating device failure will occur. Hence, it is important to predict the RUL to prevent such problems. Data-driven methods are demonstrated to be superior to model-based methods for this reason. This paper provides a review on Machine Learning (ML), one of the data-driven methods, and summarizes various approaches that have been used in lithium-ion (Li-ion) batteries RUL prediction. In addition, comparison of model-based and ML methods are discussed. In particular, the comparison of three ML methods,i.e., Support Vector Machine (SVM), Neural Networks (NN), and Deep Learning(DL) are also presented. Simulation results show that SVM is able to provide higher RUL accuracy than LSTM and ANN.
引用
收藏
页码:286 / 292
页数:7
相关论文
共 50 条
  • [1] Overview of Machine Learning Methods for Lithium-Ion Battery Remaining Useful Lifetime Prediction
    Jin, Siyu
    Sui, Xin
    Huang, Xinrong
    Wang, Shunli
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    ELECTRONICS, 2021, 10 (24)
  • [2] A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries
    Sharma, Prabhakar
    Bora, Bhaskor J. J.
    BATTERIES-BASEL, 2023, 9 (01):
  • [3] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Li, Xingjun
    Yu, Dan
    Byg, Vilsen Soren
    Ioan, Store Daniel
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 103 - 121
  • [4] A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction
    Elmahallawy, Mohamed
    Elfouly, Tarek
    Alouani, Ali
    Massoud, Ahmed M. M.
    IEEE ACCESS, 2022, 10 : 119040 - 119070
  • [5] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [6] Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium-Ion Batteries
    Zhao, Jiahui
    Zhu, Yong
    Zhang, Bin
    Liu, Mingyi
    Wang, Jianxing
    Liu, Chenghao
    Hao, Xiaowei
    SUSTAINABILITY, 2023, 15 (06)
  • [7] Machine Learning-based Remaining Useful Life Prediction Techniques for Lithium-ion Battery Management Systems: A Comprehensive Review
    Samanta, Akash
    Williamson, Sheldon
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2023, 12 (04) : 563 - 574
  • [8] Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
    Wu, Jingjin
    Cheng, Xukun
    Huang, Heng
    Fang, Chao
    Zhang, Ling
    Zhao, Xiaokang
    Zhang, Lina
    Xing, Jiejie
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [9] Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method
    Tong, Zheming
    Miao, Jiazhi
    Tong, Shuiguang
    Lu, Yingying
    JOURNAL OF CLEANER PRODUCTION, 2021, 317
  • [10] Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification
    Lu, Yiqing
    Shi, Ye
    Liu, Yu
    Wang, Haoyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, : 3666 - 3675