An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China

被引:133
作者
Guo, Qinghua [1 ,2 ]
Su, Yanjun [2 ]
Hu, Tianyu [1 ]
Zhao, Xiaoqian [1 ,3 ]
Wu, Fangfang [1 ,3 ]
Li, Yumei [1 ,3 ]
Liu, Jin [1 ]
Chen, Linhai [1 ,3 ]
Xu, Guangcai [1 ]
Lin, Guanghui [4 ]
Zheng, Yi [4 ]
Lin, Yiqiong [4 ]
Mi, Xiangcheng [1 ]
Fei, Lin [5 ]
Wang, Xugao [5 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, 20 Nanxincun, Beijing 100093, Peoples R China
[2] Univ Calif Merced, Sch Engn, Sierra Nevada Res Inst, Merced, CA USA
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing, Peoples R China
[4] Tsinghua Univ, Dept Earth Syst Sci, Beijing, Peoples R China
[5] Chinese Acad Sci, Inst Appl Ecol, Key Lab Forest Ecol & Management, Shenyang, Peoples R China
基金
美国国家科学基金会;
关键词
UNMANNED AERIAL VEHICLE; VELODYNE HDL-64E S2; LANDSAT ETM+ DATA; ABOVEGROUND BIOMASS; INDIVIDUAL TREES; BIODIVERSITY; HEIGHT; CALIBRATION; PARAMETERS; ACCURACY;
D O I
10.1080/01431161.2017.1285083
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent decades, global biodiversity has gradually diminished due to the increasing pressure from anthropogenic activities and climatic change. Accurate estimations of spatially continuous three-dimensional (3D) vegetation structures and terrain information are prerequisites for biodiversity studies, which are usually unavailable in current ecosystem-wide studies. Although the airborne lidar technique has been successfully used for mapping 3D vegetation structures at landscape and regional scales, the relatively high cost of airborne lidar flight mission has significantly limited its applications. The unmanned aerial vehicle (UAV) provides an alternative platform for lidar data acquisition, which can largely lower the cost and provide denser lidar points compared with airborne lidar. In this study, we implemented a low-cost UAV-borne lidar system, including both a hardware system and a software system, to collect and process lidar data for biodiversity studies. The implemented UAV-borne lidar system was tested in three different ecosystems across China, including a needleleaf- broadleaf mixed forest, an evergreen broadleaf forest, and a mangrove forest. Various 3D vegetation structure parameters (e.g. canopy height model, canopy cover, leaf area index, aboveground biomass) were derived from the UAV-borne lidar data. The results show that the implemented UAV-borne lidar system can generate very high resolution 3D terrain and vegetation information. The developed UAV-based hardware and software systems provide a turn-key solution for the use of UAV-borne lidar data on biodiversity studies.
引用
收藏
页码:2954 / 2972
页数:19
相关论文
共 61 条
[1]   Lightweight unmanned aerial vehicles will revolutionize spatial ecology [J].
Anderson, Karen ;
Gaston, Kevin J. .
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2013, 11 (03) :138-146
[2]  
Anjin C, 2012, DISASTER ADV, V5, P360
[3]  
[Anonymous], 2013, EARTH EXPL
[4]   Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions [J].
Bergen, K. M. ;
Goetz, S. J. ;
Dubayah, R. O. ;
Henebry, G. M. ;
Hunsaker, C. T. ;
Imhoff, M. L. ;
Nelson, R. F. ;
Parker, G. G. ;
Radeloff, V. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2009, 114
[5]   Global Biodiversity: Indicators of Recent Declines [J].
Butchart, Stuart H. M. ;
Walpole, Matt ;
Collen, Ben ;
van Strien, Arco ;
Scharlemann, Joern P. W. ;
Almond, Rosamunde E. A. ;
Baillie, Jonathan E. M. ;
Bomhard, Bastian ;
Brown, Claire ;
Bruno, John ;
Carpenter, Kent E. ;
Carr, Genevieve M. ;
Chanson, Janice ;
Chenery, Anna M. ;
Csirke, Jorge ;
Davidson, Nick C. ;
Dentener, Frank ;
Foster, Matt ;
Galli, Alessandro ;
Galloway, James N. ;
Genovesi, Piero ;
Gregory, Richard D. ;
Hockings, Marc ;
Kapos, Valerie ;
Lamarque, Jean-Francois ;
Leverington, Fiona ;
Loh, Jonathan ;
McGeoch, Melodie A. ;
McRae, Louise ;
Minasyan, Anahit ;
Morcillo, Monica Hernandez ;
Oldfield, Thomasina E. E. ;
Pauly, Daniel ;
Quader, Suhel ;
Revenga, Carmen ;
Sauer, John R. ;
Skolnik, Benjamin ;
Spear, Dian ;
Stanwell-Smith, Damon ;
Stuart, Simon N. ;
Symes, Andy ;
Tierney, Megan ;
Tyrrell, Tristan D. ;
Vie, Jean-Christophe ;
Watson, Reg .
SCIENCE, 2010, 328 (5982) :1164-1168
[6]   Biodiversity loss and its impact on humanity [J].
Cardinale, Bradley J. ;
Duffy, J. Emmett ;
Gonzalez, Andrew ;
Hooper, David U. ;
Perrings, Charles ;
Venail, Patrick ;
Narwani, Anita ;
Mace, Georgina M. ;
Tilman, David ;
Wardle, David A. ;
Kinzig, Ann P. ;
Daily, Gretchen C. ;
Loreau, Michel ;
Grace, James B. ;
Larigauderie, Anne ;
Srivastava, Diane S. ;
Naeem, Shahid .
NATURE, 2012, 486 (7401) :59-67
[7]   UAV LiDAR for below-canopy forest surveys [J].
Chisholm, Ryan A. ;
Cui, Jinqiang ;
Lum, Shawn K. Y. ;
Chen, Ben M. .
JOURNAL OF UNMANNED VEHICLE SYSTEMS, 2013, 1 (01) :61-68
[8]   Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer [J].
Chopping, Mark ;
Moisen, Gretchen G. ;
Su, Lihong ;
Laliberte, Andrea ;
Rango, Albert ;
Martonchik, John V. ;
Peters, Debra P. C. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) :2051-2063
[9]   Above- and below-ground biomass, and allometry, of four common northern Australian mangroves [J].
Comley, BWT ;
McGuinness, KA .
AUSTRALIAN JOURNAL OF BOTANY, 2005, 53 (05) :431-436
[10]   System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 [J].
Conrad, O. ;
Bechtel, B. ;
Bock, M. ;
Dietrich, H. ;
Fischer, E. ;
Gerlitz, L. ;
Wehberg, J. ;
Wichmann, V. ;
Boehner, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (07) :1991-2007