The field of reals with a predicate for the real algebraic numbers and a predicate for the integer powers of two

被引:1
作者
Khani, Mohsen [1 ]
机构
[1] Univ Freiburg, Abt Math Logik, D-79104 Freiburg, Germany
关键词
O-minimality; Dense pairs; Integer powers of two; DEPENDENT PAIRS; EXPANSIONS;
D O I
10.1007/s00153-015-0446-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a theory T of a polynomially bounded o-minimal expansion R of with field of exponents , we introduce a theory whose models are expansions of dense pairs of models of T by a discrete multiplicative group. We prove that is complete and admits quantifier elimination when predicates are added for certain existential formulas. In particular, if T = RCF then axiomatises , where denotes the real algebraic numbers. We describe types and definable sets in our models and prove that is dependent.
引用
收藏
页码:885 / 898
页数:14
相关论文
共 12 条
[1]   Externally definable sets and dependent pairs [J].
Chernikov, Artem ;
Simon, Pierre .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (01) :409-425
[2]  
Fornasiero A., 2010, ARXIV10033557
[3]   Dimensions, matroids, and dense pairs of first-order structures [J].
Fornasiero, Antongiulio .
ANNALS OF PURE AND APPLIED LOGIC, 2011, 162 (07) :514-543
[4]  
Günaydin A, 2011, J SYMBOLIC LOGIC, V76, P377, DOI 10.2178/jsl/1305810753
[5]  
Gunaydin Ayhan., 2008, MODEL THEORY FIELDS
[6]  
Hart B.T., 1997, NATO ADV STUDY I S C
[7]   DEFINING THE SET OF INTEGERS IN EXPANSIONS OF THE REAL FIELD BY A CLOSED DISCRETE SET [J].
Hieronymi, Philipp .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (06) :2163-2168
[8]  
Miller C, 2005, LECT NOTES LOGIC, V20, P281
[9]  
Miller C., 1996, Oxford Sci. Publ., P385
[10]  
van den Dries L, 1998, FUND MATH, V157, P61