FINITE GELFAND PAIRS AND CRACKING POINTS OF THE SYMMETRIC GROUPS

被引:0
作者
Pearson, Faith [1 ]
Romanov, Anna [2 ]
Soller, Dylan [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Sydney, Sydney Math Res Inst, Camperdown, NSW, Australia
关键词
finite Gelfand pair; wreath product; symmetric group;
D O I
10.1216/rmj.2020.50.1807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be a finite group. Consider the wreath product G(n) := Gamma(n) (sic) S-n and the subgroup K-n := Delta(n) x S-n subset of G(n), where S-n is the symmetric group and Delta(n) is the diagonal subgroup of Gamma(n). For certain values of n (which depend on the group Gamma), the pair (G(n), K-n) is a Gelfand pair. It is not known for all finite groups which values of n result in Gelfand pairs. Building off the work of Benson-Ratcliff [4], we obtain a result which simplifies the computation of multiplicities of irreducible representations in certain tensor product representations, then apply this result to show that for Gamma = S-k, k >= 5, (G(n), K-n) is a Gelfand pair exactly when n = 1, 2.
引用
收藏
页码:1807 / 1812
页数:6
相关论文
共 11 条
[1]   FROM PARKING FUNCTIONS TO GELFAND PAIRS [J].
Aker, Kursat ;
Can, Mahir Bilen .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) :1113-1124
[2]  
Bailey R. A., 2004, CAMBRIDGE STUDIES AD
[3]   A FAMILY OF FINITE GELFAND PAIRS ASSOCIATED WITH WREATH PRODUCTS [J].
Benson, Chal ;
Ratcliff, Gail .
COLLOQUIUM MATHEMATICUM, 2018, 152 (01) :65-78
[4]   Geometric models for the spectra of certain Gelfand pairs associated with Heisenberg groups [J].
Benson, Chal ;
Ratcliff, Gail .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (04) :719-740
[5]   Trees, wreath products and finite Gelfand pairs [J].
Ceccherini-Silberstein, Tullio ;
Scarabotti, Fabio ;
Tolli, Filippo .
ADVANCES IN MATHEMATICS, 2006, 206 (02) :503-537
[6]  
CeccheriniSilberstein T, 2008, CAM ST AD M, V108, P1, DOI 10.1017/CBO9780511619823
[7]  
Diaconis P., 1988, I MATH STAT LECT NOT, V11
[8]  
Helgason S., 1984, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, V113
[9]   An elementary derivation of the asymptotics of partition functions [J].
Kane, DM .
RAMANUJAN JOURNAL, 2006, 11 (01) :49-66
[10]  
MCKAY J, 1976, MATH COMPUT, V30, P624, DOI 10.1090/S0025-5718-1976-0404414-X