The Mod Two Cohomology of the Moduli Space of Rank Two Stable Bundles on a Surface and Skew Schur Polynomials

被引:2
作者
Scaduto, Christopher W. [1 ]
Stoffregen, Matthew [2 ]
机构
[1] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2019年 / 71卷 / 03期
关键词
stable bundles; mod two cohomology; skew schur polynomial; VECTOR-BUNDLES;
D O I
10.4153/CJM-2017-050-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute cup-product pairings in the integral cohomology ring of the moduli space of rank two stable bundles with odd determinant over a Riemann surface using methods of Zagier. The resulting formula is related to a generating function for certain skew Schur polynomials. As an application, we compute the nilpotency degree of a distinguished degree two generator in the mod two cohomology ring. We then give descriptions of the mod two cohomology rings in low genus, and describe the subrings invariant under the mapping-class group action.
引用
收藏
页码:683 / 715
页数:33
相关论文
共 19 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]  
Baranovsky V., 1994, IZV RUSS ACAD NAUK, V58, P204
[3]  
Feehan PMN, 2001, J REINE ANGEW MATH, V538, P57
[4]   An inequality for the h-invariant in instanton Floer theory [J].
Froyshov, KA .
TOPOLOGY, 2004, 43 (02) :407-432
[5]  
Gessel I.M., 1989, PREPRINT
[6]  
Hatcher A., 2002, Algebraic Topology
[7]   On the cohomology ring of the moduli space of rank 2 vector bundles on a curve [J].
King, AD ;
Newstead, PE .
TOPOLOGY, 1998, 37 (02) :407-418
[8]  
Kirwan F., 1992, J. Amer. Math. Soc., V5, P853, DOI [DOI 10.2307/2152712, 10.2307/2152712]
[9]  
Mac Donald I. G., 2015, OXFORD CLASSIC TEXTS