Heat-Transport Mechanisms in Superlattices

被引:202
作者
Koh, Yee Kan [1 ]
Cao, Yu [2 ]
Cahill, David G. [1 ]
Jena, Debdeep [2 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
关键词
THERMAL-CONDUCTIVITY; 2-DIMENSIONAL ELECTRON; SI/GE SUPERLATTICES; GA-FACE; THERMOREFLECTANCE; HETEROSTRUCTURES; DEVICES; FILMS; HFETS; ALN;
D O I
10.1002/adfm.200800984
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The heat transport mechanisms in superlattices are identified from the cross-plane thermal conductivity Lambda of (AlN)(x)-(GaN)(y) superlattices measured by time-domain thermoreflectance. For (AlN)(4.1) (nm)-(GaN)(55) (nm) superlattices grown under different conditions, A varies by a factor of two; this is attributed to differences in the roughness of the AlN/GaN interfaces. Under the growth condition that gives the lowest Lambda, Lambda of (AlN)(4) (nm)-(GaN)(y) superlattices decreases monotonically as y decreases, Lambda = 6.35 W m(-1) K-1 at y = 2.2 nm, 35 times smaller than A of bulk GaN. For long-period superlattices (y > 40 nm), the mean thermal conductance G of AlN/GaN interfaces is independent of y, G approximate to 620 MW m(-2) K-1. For y < 40 nm, the apparent value of G increases with decreasing y, reaching G approximate to 2 GW m(-2) K-1 at y < 3 nm. MeV ion bombardment is used to help determine which phonons are responsible for heat transport in short period superlattices. The thermal conductivity of an (AlN)(4.1) (nm)-(GaN)(4.9) (nm) superlattice irradiated by 2.3 MeV Ar ions to a dose of 2 x 10(14) ions cm(-2) is reduced by <35%, suggesting that heat transport in these short-period superlattices is dominated by long-wavelength acoustic phonons. Calculations using a Debye-Callaway model and the assumption of a boundary scattering rate that varies with phonon-wavelength successfully capture the temperature, period, and ion-dose dependence of A.
引用
收藏
页码:610 / 615
页数:6
相关论文
共 42 条
[1]   Determination of two-dimensional electron and hole gas carriers in AlGaN/GaN/AlN heterostructures grown by Metal Organic Chemical Vapor Deposition [J].
Acar, S. ;
Lisesivdin, S. B. ;
Kasap, M. ;
Oezcelik, S. ;
Oezbay, E. .
THIN SOLID FILMS, 2008, 516 (08) :2041-2044
[2]   Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures [J].
Ambacher, O ;
Smart, J ;
Shealy, JR ;
Weimann, NG ;
Chu, K ;
Murphy, M ;
Schaff, WJ ;
Eastman, LF ;
Dimitrov, R ;
Wittmer, L ;
Stutzmann, M ;
Rieger, W ;
Hilsenbeck, J .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (06) :3222-3233
[3]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[4]  
CAHILL DG, 1988, ANNU REV PHYS CHEM, V39, P93, DOI 10.1146/annurev.physchem.39.1.93
[5]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[6]   High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions [J].
Cao, Yu ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[7]   Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique [J].
Capinski, WS ;
Maris, HJ ;
Ruf, T ;
Cardona, M ;
Ploog, K ;
Katzer, DS .
PHYSICAL REVIEW B, 1999, 59 (12) :8105-8113
[8]   Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111) [J].
Chakraborty, S ;
Kleint, CA ;
Heinrich, A ;
Schneider, CM ;
Schumann, J ;
Falke, M ;
Teichert, S .
APPLIED PHYSICS LETTERS, 2003, 83 (20) :4184-4186
[9]   Minimum superlattice thermal conductivity from molecular dynamics [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Ni, ZH ;
Chen, MH .
PHYSICAL REVIEW B, 2005, 72 (17)
[10]   Ultra-low thermal conductivity in W/Al2O3 nanolaminates [J].
Costescu, RM ;
Cahill, DG ;
Fabreguette, FH ;
Sechrist, ZA ;
George, SM .
SCIENCE, 2004, 303 (5660) :989-990