Minimization of the third eigenvalue of the Dirichlet Laplacian

被引:35
作者
Bucur, D
Henrot, A
机构
[1] Univ Franche Comte, CNRS, Equipe Math, F-25030 Besancon, France
[2] Univ Henri Poincare, Ecole Mines, Inst Elie Cartan Nancy, UMR CNRS 7502, F-54506 Vandoeuvre Nancy, France
[3] Univ Henri Poincare, INRIA, F-54506 Vandoeuvre Nancy, France
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2000年 / 456卷 / 1996期
关键词
Laplace operator; shape optimization; third eigenvalue;
D O I
10.1098/rspa.2000.0546
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we prove the existence of a domain which minimizes the third Dirichlet eigenvalue lambda(3) of the Laplacian (-Delta) in the family of domains of R-N of given volume. Some remarks are made on the existence of a minimizer for lambda(k), k greater than or equal to 4 in the same family, and for a class of functionals depending on (lambda(1):lambda(2)).
引用
收藏
页码:985 / 996
页数:12
相关论文
共 23 条
[1]  
ADAMS DR, 1996, FUNCTION SPACES POTE
[2]  
Angot A., 1972, COMPLEMENTS MATH
[3]  
[Anonymous], WEAKLY DIFFERENTIABL
[4]  
ASHBAUGH MS, 1999, ANAL GEOMETRIC INEQU, V4787, P13
[5]  
BAXTER J, 1987, T AM MATH SOC, V303, P1
[6]   On the attainable eigenvalues of the Laplace operator [J].
Bucur, D ;
Buttazzo, G ;
Figueiredo, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (03) :527-536
[7]   Concentration-compactness principle and γ-convergence [J].
Bucur, D .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :255-258
[8]  
BUCUR D, 1998, B APPL COMP MATH, V1510, P115
[9]   AN EXISTENCE RESULT FOR A CLASS OF SHAPE OPTIMIZATION PROBLEMS [J].
BUTTAZZO, G ;
DALMASO, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (02) :183-195
[10]   Some results about Schiffer's conjectures [J].
Chatelain, T ;
Henrot, A .
INVERSE PROBLEMS, 1999, 15 (03) :647-658