Finite group actions on homology spheres and manifolds with nonzero Euler characteristic

被引:10
作者
Mundet i Riera, Ignasi [1 ]
机构
[1] Univ Barcelona, Fac Matemat, Dept Algebra & Geometria, E-08007 Barcelona, Spain
关键词
57S17; 54H15 (Primary); AUTOMORPHISM-GROUPS; JORDAN PROPERTY; LIE-GROUPS; SUBGROUPS; THEOREM;
D O I
10.1112/topo.12100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth manifold belonging to one of these three collections: acyclic manifolds (compact or not, possibly with boundary), compact connected manifolds (possibly with boundary) with nonzero Euler characteristic, integral homology spheres. We prove that Diff(X) is Jordan. This means that there exists a constant C such that any finite subgroup G of Diff(X) has an abelian subgroup whose index in G is at most C. Using a result of Randall and Petrie, we deduce that the automorphism groups of connected, non-necessarily compact, smooth real affine varieties with nonzero Euler characteristic are Jordan.
引用
收藏
页码:744 / 758
页数:15
相关论文
共 57 条
  • [1] [Anonymous], 1972, INTRO COMPACT TRANSF
  • [2] [Anonymous], 1976, GRADUATE TEXTS MATH
  • [3] Bandman T., ARXIV170507523
  • [4] Jordan groups, conic bundles and abelian varieties
    Bandman, Tatiana
    Zarhin, Yuri G.
    [J]. ALGEBRAIC GEOMETRY, 2017, 4 (02): : 229 - 246
  • [5] JORDAN GROUPS AND ALGEBRAIC SURFACES
    Bandman, Tatiana
    Zarhin, Yuri G.
    [J]. TRANSFORMATION GROUPS, 2015, 20 (02) : 327 - 334
  • [6] Birkar C., ARXIV160905543V1
  • [7] Borel A, 1960, ANN MATH STUD, V46
  • [8] ONE FIXED-POINT ACTIONS ON LOW-DIMENSIONAL SPHERES
    BUCHDAHL, NP
    KWASIK, S
    SCHULTZ, R
    [J]. INVENTIONES MATHEMATICAE, 1990, 102 (03) : 633 - 662
  • [9] A SIMPLE TRIANGULATION METHOD FOR SMOOTH MANIFOLDS
    CAIRNS, SS
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (04) : 389 - &
  • [10] Finite symmetries of S4
    Chen, Weimin
    Kwasik, Slawomir
    Schultz, Reinhard
    [J]. FORUM MATHEMATICUM, 2016, 28 (02) : 295 - 310