Realization of a holonomic quantum computer in a chain of three-level systems

被引:12
作者
Gurkan, Zeynep Nilhan [1 ,2 ]
Sjoqvist, Erik [3 ,4 ]
机构
[1] Gediz Univ, Dept Ind Engn, TR-35665 Izmir, Turkey
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[4] Uppsala Univ, Dept Quantum Chem, SE-75120 Uppsala, Sweden
基金
新加坡国家研究基金会; 瑞典研究理事会;
关键词
Geometric phase; Quantum gates; NONADIABATIC GEOMETRIC GATES; COMPUTATION;
D O I
10.1016/j.physleta.2015.10.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Holonomic quantum computation is the idea to use non-Abelian geometric phases to implement universal quantum gates that are robust to fluctuations in control parameters. Here, we propose a compact design for a holonomic quantum computer based on coupled three-level systems. The scheme does not require adiabatic evolution and can be implemented in arrays of atoms or ions trapped in tailored standing wave potentials. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:3050 / 3053
页数:4
相关论文
共 32 条
[11]   Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions [J].
Faoro, L ;
Siewert, J ;
Fazio, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4-028301
[12]   Experimental Realization of Nonadiabatic Holonomic Quantum Computation [J].
Feng, Guanru ;
Xu, Guofu ;
Long, Guilu .
PHYSICAL REVIEW LETTERS, 2013, 110 (19)
[13]   Robustness of nonadiabatic holonomic gates [J].
Johansson, Markus ;
Sjoqvist, Erik ;
Andersson, L. Mauritz ;
Ericsson, Marie ;
Hessmo, Bjoern ;
Singh, Kuldip ;
Tong, D. M. .
PHYSICAL REVIEW A, 2012, 86 (06)
[14]   Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions [J].
Liang, Zhen-Tao ;
Du, Yan-Xiong ;
Huang, Wei ;
Xue, Zheng-Yuan ;
Yan, Hui .
PHYSICAL REVIEW A, 2014, 89 (06)
[15]   Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets [J].
Mousolou, Vahid Azimi ;
Canali, Carlo M. ;
Sjoqvist, Erik .
NEW JOURNAL OF PHYSICS, 2014, 16
[16]   Optical holonomic quantum computer [J].
Pachos, J ;
Chountasis, S .
PHYSICAL REVIEW A, 2000, 62 (05) :052318-052311
[17]   Quantum computation with trapped ions in an optical cavity [J].
Pachos, J ;
Walther, H .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-187903
[18]   Quantum Holonomies for Quantum Computing [J].
Pachos, J ;
Zanardi, P .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (09) :1257-1285
[19]   Non-Abelian geometric phases in ground-state Josephson devices [J].
Pirkkalainen, J-M ;
Solinas, P. ;
Pekola, J. P. ;
Mottonen, M. .
PHYSICAL REVIEW B, 2010, 81 (17)
[20]   Effective quantum spin systems with trapped ions [J].
Porras, D ;
Cirac, JI .
PHYSICAL REVIEW LETTERS, 2004, 92 (20) :207901-1