Event-Triggered Adaptive Dynamic Programming for Uncertain Nonlinear Systems

被引:0
作者
Zhang, Qichao [1 ,2 ]
Zhao, Dongbin [1 ,2 ]
Wang, Ding [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
COGNITIVE SYSTEMS AND SIGNAL PROCESSING, ICCSIP 2016 | 2017年 / 710卷
基金
中国国家自然科学基金;
关键词
Adaptive dynamic programming; Event-triggered control; Robust control; Neural network; CONTROL DESIGN; ROBUST-CONTROL;
D O I
10.1007/978-981-10-5230-9_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the robust control for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-triggered adaptive dynamic programming method. First, the robust control problem is solved using the optimal control method. Under the event-triggered mechanism, the solution of the optimal control problem can asymptotically stabilize the uncertain system with an designed triggering condition. That is, the designed event-triggered controller is robust to the original uncertain system. Then, a single critic network structure with experience replay technique is constructed to approach the optimal control policies. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed control scheme.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 15 条
[1]   Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach [J].
Abu-Khalaf, M ;
Lewis, FL .
AUTOMATICA, 2005, 41 (05) :779-791
[2]  
[Anonymous], REINFORCEMENT LEARNI
[3]  
Lewis F. L., 2013, Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
[4]   ROBUST-CONTROL OF NONLINEAR-SYSTEMS - COMPENSATING FOR UNCERTAINTY [J].
LIN, F ;
BRANDT, RD ;
SUN, J .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 56 (06) :1453-1459
[5]   An optimal control approach to robust control design [J].
Lin, F .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (03) :177-186
[6]   Neural-Network-Based Online HJB Solution for Optimal Robust Guaranteed Cost Control of Continuous-Time Uncertain Nonlinear Systems [J].
Liu, Derong ;
Wang, Ding ;
Wang, Fei-Yue ;
Li, Hongliang ;
Yang, Xiong .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (12) :2834-2847
[7]   Adaptive Optimal Control of Unknown Constrained-Input Systems Using Policy Iteration and Neural Networks [J].
Modares, Hamidreza ;
Lewis, Frank L. ;
Naghibi-Sistani, Mohammad-Bagher .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (10) :1513-1525
[8]   Near Optimal Event-Triggered Control of Nonlinear Discrete-Time Systems Using Neurodynamic Programming [J].
Sahoo, Avimanyu ;
Xu, Hao ;
Jagannathan, Sarangapani .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (09) :1801-1815
[9]   Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems [J].
Vamvoudakis, Kyriakos G. (kyriakos@ece.ucsb.edu), 1600, Institute of Electrical and Electronics Engineers Inc. (01) :282-293
[10]   Neural-network-based robust optimal control design for a class of uncertain nonlinear systems via adaptive dynamic programming [J].
Wang, Ding ;
Liu, Derong ;
Li, Hongliang ;
Ma, Hongwen .
INFORMATION SCIENCES, 2014, 282 :167-179