Robust Graph Learning for Multi-view Clustering

被引:0
|
作者
Huang, Yixuan [1 ]
Xiao, Qingjiang [2 ]
Du, Shiqiang [1 ]
机构
[1] Northwest Minzu Univ, Coll Math & Comp Sci, Lanzhou 730030, Gansu, Peoples R China
[2] Northwest Minzu Univ, Chinese Natl Informat Technol Res Inst, Minist Educ, Key Lab Chinas Ethn Languages & Informat Technol, Lanzhou 730030, Gansu, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
基金
中国国家自然科学基金;
关键词
Multi-view clustering; manifold structure; graph learning; Markov chain;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The multi-view algorithm based on graph learning pays attention to the manifold structure of data and shows the good performance in clustering task. However, multi-view data usually contains noise, which reduces the robustness of multi-view clustering algorithm. In order to solve this problem, we propose a novel multi-view clustering model, namely robust graph learning for multi-view clustering (RGLMC). RGLMC eliminates noise and errors from the original data and employs the adaptive graph, which characterizes the relationship between clusters, as the new input of the algorithm. Our model can be optimized efficiently by utilizing the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) algorithm. Extensive experimental results on six benchmark datasets verify the superiority of the proposed method in clustering task.
引用
收藏
页码:7331 / 7336
页数:6
相关论文
共 50 条
  • [41] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 10
  • [42] Inclusivity induced adaptive graph learning for multi-view clustering
    Zou, Xin
    Tang, Chang
    Zheng, Xiao
    Sun, Kun
    Zhang, Wei
    Ding, Deqiong
    KNOWLEDGE-BASED SYSTEMS, 2023, 267
  • [43] Essential anchor graph learning for incomplete multi-view clustering
    Song, Peng
    Mu, Jinshuai
    Cheng, Yuanbo
    Liu, Zhaohu
    Zheng, Wenming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [44] Multi-view Contrastive Graph Clustering
    Pan, Erlin
    Kang, Zhao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [45] Adaptive graph learning for enhanced incomplete multi-view clustering
    Rui Hong
    Xiao-ping Chen
    Yan Zhou
    Hui Liu
    Tiancai Wan
    Taili Bai
    Pattern Analysis and Applications, 2025, 28 (2)
  • [46] Metric Multi-View Graph Clustering
    Tan, Yuze
    Liu, Yixi
    Wu, Hongjie
    Lv, Jiancheng
    Huang, Shudong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9962 - 9970
  • [47] MULTI-VIEW SUBSPACE CLUSTERING WITH CONSENSUS GRAPH CONTRASTIVE LEARNING
    Zhang, Jie
    Sun, Yuan
    Guo, Yu
    Wang, Zheng
    Nie, Feiping
    Wang, Fei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6340 - 6344
  • [48] Graph Learning With Riemannian Optimization for Multi-View Integrative Clustering
    Khan, Aparajita
    Maji, Pradipta
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 381 - 393
  • [49] Clustering Structure-Induced Robust Multi-View Graph Recovery
    Wong, Wai Keung
    Han, Na
    Fang, Xiaozhao
    Zhan, Shanhua
    Wen, Jie
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (10) : 3584 - 3597
  • [50] Multi-View Comprehensive Graph Clustering
    Mei, Yanying
    Ren, Zhenwen
    Wu, Bin
    Yang, Tao
    Shao, Yanhua
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3279 - 3288