Robust Graph Learning for Multi-view Clustering

被引:0
作者
Huang, Yixuan [1 ]
Xiao, Qingjiang [2 ]
Du, Shiqiang [1 ]
机构
[1] Northwest Minzu Univ, Coll Math & Comp Sci, Lanzhou 730030, Gansu, Peoples R China
[2] Northwest Minzu Univ, Chinese Natl Informat Technol Res Inst, Minist Educ, Key Lab Chinas Ethn Languages & Informat Technol, Lanzhou 730030, Gansu, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
基金
中国国家自然科学基金;
关键词
Multi-view clustering; manifold structure; graph learning; Markov chain;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The multi-view algorithm based on graph learning pays attention to the manifold structure of data and shows the good performance in clustering task. However, multi-view data usually contains noise, which reduces the robustness of multi-view clustering algorithm. In order to solve this problem, we propose a novel multi-view clustering model, namely robust graph learning for multi-view clustering (RGLMC). RGLMC eliminates noise and errors from the original data and employs the adaptive graph, which characterizes the relationship between clusters, as the new input of the algorithm. Our model can be optimized efficiently by utilizing the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) algorithm. Extensive experimental results on six benchmark datasets verify the superiority of the proposed method in clustering task.
引用
收藏
页码:7331 / 7336
页数:6
相关论文
共 50 条
  • [21] Consensus Graph Learning for Incomplete Multi-view Clustering
    Zhou, Wei
    Wang, Hao
    Yang, Yan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 529 - 540
  • [22] Robust Multi-View Clustering via Graph-Oriented High-Order Correlations Learning
    Liu, Wenzhe
    Zhu, Jiongcheng
    Wang, Huibing
    Zhang, Yong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2025, 12 (02): : 559 - 570
  • [23] Joint learning of latent subspace and structured graph for multi-view clustering
    Wang, Yinuo
    Guo, Yu
    Wang, Zheng
    Wang, Fei
    PATTERN RECOGNITION, 2024, 154
  • [24] Multi-View Clustering With Graph Learning for scRNA-Seq Data
    Wu, Wenming
    Zhang, Wensheng
    Hou, Weimin
    Ma, Xiaoke
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3535 - 3546
  • [25] Incomplete Multi-View Clustering With Joint Partition and Graph Learning
    Li, Lusi
    Wan, Zhiqiang
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 589 - 602
  • [26] A weighted multi-view clustering via sparse graph learning
    Zhou, Jie
    Zhang, Runxin
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 13517 - 13530
  • [27] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3534 - 3543
  • [28] Multi-view clustering with adaptive anchor and bipartite graph learning
    Zhou, Shibing
    Wang, Xi
    Yang, Mingrui
    Song, Wei
    NEUROCOMPUTING, 2025, 611
  • [29] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 3534 - 3543
  • [30] MULTI-VIEW SUBSPACE CLUSTERING WITH CONSENSUS GRAPH CONTRASTIVE LEARNING
    Zhang, Jie
    Sun, Yuan
    Guo, Yu
    Wang, Zheng
    Nie, Feiping
    Wang, Fei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6340 - 6344