Cell layer level generalized dynamic modeling of a PEMFC stack using VHDL-AMS language

被引:47
作者
Gao, Fei [1 ]
Blunier, Benjamin [1 ]
Miraoui, Abdellatif [1 ]
El-Moudni, Abdellah [1 ]
机构
[1] UTBM, Transport & Syst Lab SeT, EA 3317, F-90000 Belfort, France
关键词
Fuel cells stack; PEM fuel cells; Dynamic Modeling; Energy conversion; Experimental tests; Hardware design languages; INDUCTION-MOTOR DRIVE; FUEL-CELL; SCROLL COMPRESSOR; AIR MANAGEMENT; SYSTEM; FLOW;
D O I
10.1016/j.ijhydene.2009.04.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A generalized, cell layer scale proton exchange membrane fuel cell (PEMFC) stack dynamic model is presented using VHDL-AMS (IEEE standard Very High Speed Integrated Circuit Hardware Description Language-Analog and Mixed-Signal Extensions) modeling language. A PEMFC stack system is a complex energy conversion system that covers three main energy domains: electrical, fluidic and thermal. The first part of this work shows the performance and the advantages of VHDL-AMS language when modeling such a complex system. Then, using the VHDL-AMS modeling standards, an electrical domain model, a fluidic domain model and a thermal domain model of the PEMFC stack are coupled and presented together. Thus, a complete coupled multi-domain fuel cell stack I-D dynamic model is given. The simulation results are then compared with a Ballard 1.2 kW NEXA fuel cell system, and show a great agreement between the simulation and experimentation. This complex multi-domain VHDL-AMS stack model can be used for a model based control design or a Hardware-in-the-Loop application. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5498 / 5521
页数:24
相关论文
共 39 条
  • [1] AMPHLETT J, 1996, J POWER SOURCES, V61, P6
  • [2] AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866
  • [3] Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system - I. Control-oriented modeling
    Bao, Cheng
    Ouyang, Minggao
    Yi, Baolian
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (13) : 1879 - 1896
  • [4] Barbir F, 2005, SUSTAIN WORLD SER, P1
  • [5] Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding
    Baschuk, JJ
    Li, XH
    [J]. JOURNAL OF POWER SOURCES, 2000, 86 (1-2) : 181 - 196
  • [6] A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL
    BERNARDI, DM
    VERBRUGGE, MW
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) : 2477 - 2491
  • [7] MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE
    BERNARDI, DM
    VERBRUGGE, MW
    [J]. AICHE JOURNAL, 1991, 37 (08) : 1151 - 1163
  • [8] Bird R B., 2002, Transportphenomena
  • [9] Modelling of fuel cells using multi-domain VHDL-AMS language
    Blunier, B.
    Miraoui, A.
    [J]. JOURNAL OF POWER SOURCES, 2008, 177 (02) : 434 - 450
  • [10] A new analytical and dynamical model of a scroll compressor with experimental validation
    Blunier, B.
    Cirrincione, G.
    Herve, Y.
    Miraoui, A.
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2009, 32 (05): : 874 - 891