Stability of ODE blow-up for the energy critical semilinear heat equation

被引:5
作者
Collot, Charles [1 ]
Merle, Frank [2 ,3 ]
Raphael, Pierre [1 ]
机构
[1] Univ Nice Sophia Antipolis, Lab Jean Alexandre Dieudonne, Nice, France
[2] Univ Cergy Pontoise, Lab Laga, Cergy Pontoise, France
[3] IHES, Bures Sur Yvette, France
基金
欧洲研究理事会;
关键词
D O I
10.1016/j.crma.2016.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the energy critical semilinear heat equation partial derivative(t)u = Delta u + vertical bar u vertical bar(4/d-2)u, x is an element of R-d in dimension d >= 3. We propose a self-contained proof of the stability of solutions u-blowing-up in finite time with type-I ODE blow-up parallel to u parallel to(infinity)(L) similar to k(T-t)(d-2/4), T > 0, k := (d-2/4)(d-2/4) which adapts to the energy critical case the proof of Fermanian, Merle, Zaag [4]. (C) 2016 Acadamie des sciences. Published by Elsevier Masson SAS.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 13 条
[1]  
Bahouri Hajer, 2011, FOURIER ANAL NONLINE, V343
[2]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[3]  
Collot C., 2016, PREPRINT
[4]   Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity [J].
Filippas, S ;
Herrero, MA ;
Velázquez, JJL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2004) :2957-2982
[5]   Blow up rate for semilinear heat equations with subcritical nonlinearity [J].
Giga, Y ;
Matsui, SY ;
Sasayama, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :483-514
[6]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884
[7]  
Kammerer CF, 2000, MATH ANN, V317, P347
[8]   A Liouville theorem for vector-valued nonlinear heat equations and applications [J].
Merle, F ;
Zaag, H .
MATHEMATISCHE ANNALEN, 2000, 316 (01) :103-137
[9]  
Merle F, 1998, COMMUN PUR APPL MATH, V51, P139, DOI 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO
[10]  
2-C