Self-injective von Neumann regular rings and Kothe's conjecture

被引:0
作者
Kalnai, Peter [1 ]
Zemlicka, Jan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
von Neumann regular; NIL;
D O I
10.1016/j.jpaa.2020.106589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the many equivalent formulation of the Kothe's conjecture is the assertion that there exists no unital ring which contains two nil right ideals whose sum is not nil. We discuss several consequences of an observation that if the Koethe conjecture fails then there exists a counterexample in the form of a countable local subring of a suitable self-injective prime von Neumann regular unital ring. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 19 条
[1]  
Amitsur S. A., 1956, P AM MATH SOC, V7, P35
[2]   THE NILPOTENCY OF THE RADICAL IN A FINITELY GENERATED PI RING [J].
BRAUN, A .
JOURNAL OF ALGEBRA, 1984, 89 (02) :375-396
[3]   2-SIDED IDEALS IN RIGHT SELF-INJECTIVE REGULAR-RINGS [J].
BUSQUE, C .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 67 (03) :209-245
[4]   ON RINGS WHICH ARE SUMS OF 2 SUBRINGS [J].
FERRERO, M ;
PUCZYLOWSKI, ER .
ARCHIV DER MATHEMATIK, 1989, 53 (01) :4-10
[5]  
GOODEARL KR, 1979, MONOGRAPHS STUDIES M, V4
[6]  
Goodearl KR., 1991, von Neumann Regular Rings, V2
[7]   NIL RINGS SATISFYING CERTAIN CHAIN CONDITIONS [J].
HERSTEIN, IN ;
SMALL, L .
CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (04) :771-&
[8]  
Kemer A. R., 1980, SOV MATH DOKL, V255, p[793, 750]
[10]  
Krempa J., 1972, FUNDAMENTAL MATHEMAT, V76, P121