Characterization of a canola C2 domain gene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum

被引:19
作者
Wang, Xinyu [1 ,2 ,3 ]
Li, Qian [1 ]
Niu, Xiaowei [2 ]
Chen, Haiyan [1 ]
Xu, Langlai [1 ]
Qi, Cunkou [3 ]
机构
[1] Nanjing Agr Univ, Coll Life Sci, Nanjing 210095, Peoples R China
[2] Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Peoples R China
[3] Acad Jiangsu Agr Sci, Nanjing 210014, Peoples R China
基金
中国国家自然科学基金;
关键词
BiFC; C2; domain; endo-PG; PG; Sclerotinia sclerotiorum; PROTEIN-KINASE; PHOSPHOLIPASE-C; PLASMA-MEMBRANE; CALCIUM; DEFENSE; BINDING; TRANSLOCATION; EXPRESSION; STRESS; EVOLUTION;
D O I
10.1093/jxb/erp104
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sspg1d, one of endopolygalacturonases, is an important fungal effector secreted by the necrotrophic fungus Sclerotinia sclerotiorum during early infection. Using sspg1d as bait, a small C2 domain protein (designated as IPG-1) was identified by yeast two-hybrid screening of a canola cDNA library. Deletion analysis confirmed that the C-terminus of IPG-1 is responsible for its interaction with sspg1d in the yeast two-hybrid assay. The sspg1d/IPG-1 interaction was further confirmed in plant cells by a biomolecular fluorescence complementation (BiFC) assay. A transient expression assay showed that the IPG-1-GFP fusion protein was targeted to the plasma membrane and nucleus in onion epidermal cells. Following treatment with a Ca2+ ionophore, it was distributed throughout the cytosol. Real-time PCR assay demonstrated that IPG-1 was highly induced by Sclerotinia sclerotiorum in canola leaves and stems. Southern blot analysis indicated the presence of about five homologues of IPG-1 in the canola genome. Two additional members of the IPG-1gene family were isolated by RT-PCR. Their sequence similarity with IPG-1 is as high as 95%. However, they did not interact with sspg1d in the yeast two-hybrid assay. Possible roles of IPG-1 and its association with sspg1d in the defence signalling pathway were discussed.
引用
收藏
页码:2613 / 2620
页数:8
相关论文
共 47 条
[1]   Membrane targeting of C2 domains of phospholipase C-δ isoforms [J].
Ananthanarayanan, B ;
Das, S ;
Rhee, SG ;
Murray, D ;
Cho, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3568-3575
[2]   INDEX OF PLANT HOSTS OF SCLEROTINIA-SCLEROTIORUM [J].
BOLAND, GJ ;
HALL, R .
CANADIAN JOURNAL OF PLANT PATHOLOGY-REVUE CANADIENNE DE PHYTOPATHOLOGIE, 1994, 16 (02) :93-108
[3]   Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant [J].
Chehab, EW ;
Patharkar, OR ;
Hegeman, AD ;
Taybi, T ;
Cushman, JC .
PLANT PHYSIOLOGY, 2004, 135 (03) :1430-1446
[4]  
CHEN YQ, 1993, CHINESE J OIL CROP S, V15, P4
[5]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814
[6]   A NOVEL ARACHIDONIC ACID-SELECTIVE CYTOSOLIC PLA2 CONTAINS A CA2+-DEPENDENT TRANSLOCATION DOMAIN WITH HOMOLOGY TO PKC AND GAP [J].
CLARK, JD ;
LIN, LL ;
KRIZ, RW ;
RAMESHA, CS ;
SULTZMAN, LA ;
LIN, AY ;
MILONA, N ;
KNOPF, JL .
CELL, 1991, 65 (06) :1043-1051
[7]   Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis [J].
Dammann, C ;
Ichida, A ;
Hong, BM ;
Romanowsky, SM ;
Hrabak, EM ;
Harmon, AC ;
Pickard, BG ;
Harper, JF .
PLANT PHYSIOLOGY, 2003, 132 (04) :1840-1848
[8]  
DAVLETOV BA, 1993, J BIOL CHEM, V268, P26386
[9]   Abrogation of disease development in plants expressing animal antiapoptotic genes [J].
Dickman, MB ;
Park, YK ;
Oltersdorf, T ;
Li, W ;
Clemente, T ;
French, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6957-6962
[10]   Regulation of protein kinase C βII by its C2 domain [J].
Edwards, AS ;
Newton, AC .
BIOCHEMISTRY, 1997, 36 (50) :15615-15623