The spectrum and toughness of regular graphs

被引:17
作者
Cioaba, Sebastian M. [1 ]
Wong, Wiseley [2 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
Eigenvalues of graphs; Toughness; Strongly regular graph; Hoffman ratio bound; Independence number; EIGENVALUES;
D O I
10.1016/j.dam.2013.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1995, Brouwer proved that the toughness of a connected k-regular graph G is at least k/lambda - 2, where X is the maximum absolute value of the non-trivial eigenvalues of G. Brouwer conjectured that one can improve this lower bound to k/lambda - 1 and that many graphs (especially graphs attaining equality in the Hoffman ratio bound for the independence number) have toughness equal to k/lambda. In this paper, we improve Brouwer's spectral bound when the toughness is small and we determine the exact value of the toughness for many strongly regular graphs attaining equality in the Hoffman ratio bound such as Lattice graphs, Triangular graphs, complements of Triangular graphs and complements of point-graphs of generalized quadrangles. For all these graphs with the exception of the Petersen graph, we confirm Brouwer's intuition by showing that the toughness equals k/(-lambda(min)), where lambda(min), is the smallest eigenvalue of the adjacency matrix of the graph. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 18 条
[1]   TOUGH RAMSEY GRAPHS WITHOUT SHORT CYCLES [J].
ALON, N .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (03) :189-195
[2]  
[Anonymous], 2001, ALGEBRAIC GRAPH THEO, DOI DOI 10.1007/978-1-4613-0163-9
[3]   The complexity of recognizing tough cubic graphs [J].
Bauer, D ;
vandenHeuvel, J ;
Morgana, A ;
Schmeichel, E .
DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) :35-44
[4]   Toughness in graphs - A survey [J].
Bauer, D ;
Broersma, H ;
Schmeichel, E .
GRAPHS AND COMBINATORICS, 2006, 22 (01) :1-35
[5]   Not every 2-tough graph is Hamiltonian [J].
Bauer, D ;
Broersma, HJ ;
Veldman, HJ .
DISCRETE APPLIED MATHEMATICS, 2000, 99 (1-3) :317-321
[6]  
Bauer D., 1998, C NUMER, V130, P47
[7]  
Brouwer A. E., 1985, European J. Combin., V6, P215
[8]  
Brouwer A.E., 1996, CWI Q, V9, P37
[9]  
BROUWER AE, 1995, LINEAR ALGEBRA APPL, V226, P267, DOI 10.1016/0024-3795(95)00154-J
[10]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6